• Title/Summary/Keyword: mechanical HVAC

Search Result 96, Processing Time 0.026 seconds

An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests (공기조화기용 열교환기의 공기측 파울링 가속 특성 분석)

  • Ahn, Young-Chull;Cho, Jae-Min;Lee, Jae-Keun;Lee, Hyun-Uk;Ahn, Seung-Phyo;Youn, Deok-Hyun;Kang, Tae-Wook;Ock, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1857-1862
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 $g/m^3$), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level.

  • PDF

A Study on the Characteristics of Environment-friendly Skins of European Housing - Focused on the Structural Characteristics of the skins - (유럽 집합주택을 대상으로 한 환경친화적 외피의 특성 분석 - 외피의 구축적 특성에 따른 유형별 분석을 중심으로 -)

  • Won, Hyun Seong;Kim, Jin Woo;Oh, Se Gyu
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • The purpose of this study is to analyze application methods and structural characteristics of each element of environment-friendly European housing through classification of skin types. The results of the study are following. 1) The skins are classified by three types; single skin with multi layers, double skin with single layer and double skin with multi layers. 2) Most single skins with multi-layer are composed with wooden louvers, sun blinds and insulating windows. There are introduction of atrium and balcony, and variation sectional space composition according to cases. 3) There are two types of double skins; to put cavity between inner skin and outer skin and more extensional spaces such as balconies, corridors and stair halls. Solar walls and mechanical ventilators are often introduced to double skins with multi-layer. 4) The functions of the latest environment-friendly skins are vary from controllers and buffers of indoor environmental elements such as temperature, light, air and sound to equipments to perform essential functions to efficiently operate HVAC systems.

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

Infiltration in Residential Buildings under Uncertainty (공동주택 침기의 불확실성 분석)

  • Hyun, Se-Hoon;Park, Cheol-Soo;Moon, Hyeun-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

BIM and Fire Safety Engineering - Overview of State of The Art

  • Davidson, Anne;Gales, John
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.251-263
    • /
    • 2021
  • Fire safety engineering is a critical specialization to include in the design of a tall building yet is often excluded from the Building Information Model (BIM) and integrated design process. The design of fire safety systems is interdependent with building/structural geometry, HVAC, mechanical, and electrical systems. A BIM is a 3D visual representation that stores data on these kinds of systems. The compatibility between BIM and fire safety design seems obvious yet has received a dearth of attention in structural (fire) engineering literature. The authors herein have reviewed over 40 recent papers on utilizing BIM for fire safety engineering, focusing on contemporary literature to obtain a more up-to-date review of the state-of-the-art. The resulting trends, technologies, research gaps, and methodologies are presented in this paper. Adoption of BIM in fire safety engineering is slow and behind other disciplines which may be improved if research involved more industry partners. For BIM technology to reach its potential, industry manufacturers need to provide high LOD fire BIM objects, fire engineers and researchers need to collaborate on future advancements, and building owners/management need to be educated on how to use the benefits provided.

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

Study to Application of Controlled Switching HVAC Circuit Breaker in KEPCO Grid (개폐제어형 초고압차단기의 해외적용사례와 한전계통 적용검토)

  • Oh, Seung-Ryle;Kwak, Joo-Sik;Jeong, Moon-Gyu;Han, Ki-Seon;Goo, Sun-Geun;Ju, Hyoung-Jun;Park, Min-Hae;Kim, Hyun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.433-434
    • /
    • 2015
  • Dictionary meaning of circuit-breaker is a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit. and it had been recognized as being operated simultaneously. Controlled Switching System(CSS), which is technology for individual pole operation, are widely used to reduce transient phenomenon, for example switching surges, inrush current, for a all switching cases and nowadays it have become and economical solution for a switching place. The conventional solution to these problem is the use of pre-insertion resistors of $520{\Omega}$. However, it is recognised that the cost for products and maintenance are expensive and this apparatus makes more complex the circuit-breaker mechanism. Korea Electric Power Cooperation (KEPCO) has been study for relevant CCS technology since pilot application in substation in 2003 and plan to apply the actual power grid in 2017. This paper deals with the investigation of international CCS operation status and preview for application in KEPCO power grid.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.