• Title/Summary/Keyword: mechanical HVAC

Search Result 96, Processing Time 0.032 seconds

Modeling of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners using Accelerated Particle-Loading System (파울링 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 예측 모델링)

  • Ahn Young-Chull;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate and to model the air-side particulate fouling characteristics of the heat exchangers using accelerated particle loading system. The main variables of the modeling equation are face velocity and dust concentration. The modeling equation shows good agreements with the experimental results at the face velocity of 0.5, 1.0, 1.5 m/s and the dust concentration of 1.28 and $3.84\;g/m^3$. It will be very useful to predict fouling characteristics such as variations of pressure drop and heat transfer capacity in finned-tube heat exchangers of air conditioners.

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis (유한요소해석을 통한 자동차용 글라스의 승강성능 예측)

  • Moon, Hyung-Il;Kim, Heon-Young;Choi, Cheon;Lee, In-Heok;Kim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1749-1755
    • /
    • 2010
  • The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

An Analysis on the 500m - Mesh Classification based on the Heat Consumption Density in Busan (부산시 500m 메시 레벨에서의 에너지소비량 분포 분석)

  • Hwang, Kwang-Il;Choi, Duk-In;Kim, Da-Hye;Yang, Ing-Chan;Yoon, So-Ra
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.193-194
    • /
    • 2010
  • This study classify the every meshes in Busan metropolitan city, based on the heat density and cooling/heating ratio. As the result of evaluations on the heat density and cooling/heating ratio for the 3289 meshes, the number of meshes which needs more than 2.5 Tcal/mesh.year of heat density is 850(25.8%). The meshes that needs more than district and cooling index 1, which is normally and strongly requested to introduce the district cooling and heating system, is 188(5.7%).

  • PDF

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A study on the evaluation of fire safety according to the ventilation mode in a train fire at the subway platform (지하철 승강장에서 열차 화재시 제연모드에 따른 화재 안전성 평가 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.

A Prediction on Indoor Contaminant Diffusion Characteristics of a Training Ship by Mechanical Ventilation System (기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1124-1131
    • /
    • 2011
  • This study performed the prediction about the indoor contaminant's diffusion characteristics which can be affected by the mechanical ventilation system on a training ship. The results are as followings. It is clear that the contaminants are spread to most of the indoors, regardless of the contamination beginning zone. About 65~100 minutes later, the contaminant densities of whole indoor zones are evaluated as clean. Comparing the contamination beginning zone being located at higher deck(scenario A) to the contamination beginning zone being located at lower deck(scenario B), although the contaminant density by scenario A is 10 times higher than that by scenario B, the number of contaminated zones are 50% less. The contaminant densities are evaluated as to be rapidly decreased when the outside air induction ratio against design volume is over 75%.

Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit (공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구)

  • Kim, Se-Young;Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jin-Ho;Kim, Myung-Joon;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Comparison analysis of cooling loads according to window systems and balcony expansion for a high-rise residential building (초고층 공동주택에서 발코니 확장에 따른 창호시스템별 냉방부하 분석 및 비교)

  • Kim, Yun-Jin;Park, Sang-Hyun;Lee, Jong-Chan;Lim, Jung-Hee;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.184-189
    • /
    • 2008
  • These days, Apartment is altered oversized and high-rise through construction techniques development. Also, the cost of cooling and heating load would be expected by balcony expansion into inner space caused by legalization. In specially, HVAC systems of high-rise residential building almost apply to pre-existence techniques of middle and low residential building except for consideration and methods of the air inflow minimization into indoor through mechanical ventilation is used in ventilation system. From these cause, window systems of high-rise apartments stands high in estimation of components. Thus, purpose of this study is to make a comparative study through difference of window systems.

  • PDF