• Title/Summary/Keyword: meat flavor

Search Result 428, Processing Time 0.023 seconds

Feeding regimens affecting carcass and quality attributes of sheep and goat meat - A comprehensive review

  • Yafeng Huang;Lumeng Liu;Mengyu Zhao;Xiaoan Zhang;Jiahong Chen;Zijun Zhang;Xiao Cheng;Chunhuan Ren
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1314-1326
    • /
    • 2023
  • Sheep and goats can efficiently convert low quality forage into high-quality meat which contains specific nutrients and quality traits. Carcass traits and quality attributes of sheep and goat meat depend upon several factors and one of most effective strategies amongst these is feeding regimens. In this review, the major aspects of feeding regimens affecting growth rate, carcass traits and quality attributes of sheep and goat meat are thoroughly discussed, with a particular focus on physical-chemical composition, flavor profile, and fatty acid (FA) profile. Grazing lambs and kids receiving concentrate or under stall-feeding systems had greater average daily gain and carcass yield compared with animals reared on pasture only. However, growth rate was higher in lambs/kids grazing on pastures of improved quality. Moreover, the meat of grazing lambs receiving concentrate had more intense flavor, intramuscular fat (IMF) content, and unhealthy FA composition, but comparable color, tenderness, juiciness, and protein content compared to that of lambs grazed on grass only. In contrast, meat of concentrate-fed lambs had more intense color, greater tenderness and juiciness, IMF and protein contents, and lower flavor linked to meat. Additionally, the meat of kids grazed on concentrate supplementation had higher color coordinates, tenderness, IMF content and unhealthy FA composition, whereas juiciness and flavor protein content were similar. In contrast, kids with concentrate supplementation had superior color coordinates, juiciness, IMF content and unhealthy FA composition, but lower tenderness and flavor intensity compared to pasture-grazed kids. Thus, indoor-finished or supplemented grazing sheep/goats had higher growth rate and carcass quality, higher IMF content and unhealthy FA composition compared to animals grazed on grass only. Finally, supplementation with concentrate increased flavor intensity in lamb meat, and improved color and tenderness in kid meat, whereas indoor-fed sheep/goats had improved color and juiciness as well as reduced flavor compared to pasture-grazed animals.

Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep

  • Li, Xiu;Amadou, Issoufou;Zhou, Guang-Yun;Qian, Li-Yan;Zhang, Jian-Ling;Wang, Dong-Liang;Cheng, Xiang-Rong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.527-540
    • /
    • 2020
  • Donkey in China is well known for its draft purpose and transportation; however, donkey meat has attracted more and more consumers in recent years, yet it lacks sufficient information on its flavor components compared to other main meats. Therefore, in this study, volatile flavor compounds in neck meat of donkey, swine, bovine, and sheep were classified by electronic nose, then confirmed and quantified by gas chromatography-mass spectrometry. High-performance liquid chromatography (HPLC) and gas chromatography were used to quantify free fatty acid, amino acid, and flavor nucleotide. A total of 73 volatile compounds were identified, and aldehydes were identified as the characteristic flavor compounds in neck meat of donkey, bovine, swine and sheep in proportion of 76.39%, 46.62%, 31.64%, and 35.83%, respectively. Particularly, hexanal was the most abundant volatile flavor. Compared with other neck meat, much higher unsaturated free fatty acids were present in donkeys. Furthermore, neck meat of donkeys showed essential amino acid with highest content. Thus, special flavor and nutrition in donkey neck meat make it probably a candidate for consumers in other regions besides Asia.

Manufacturing of Meat Flavor Extract used for Browning Reaction (Browning Reaction을 이용한 Meat Flavor Extract의 개발)

  • Kim Duk-Sook;Kim Jong-Seung
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.313-321
    • /
    • 2004
  • Separation-concentration of sulfur containing heterocyclic compounds(SCHC) from many reaction meat flavors manufactured with Maillard reaction was carried out. Profile of SCHC was identified and analyzed by GC and GC-MSD. The results were as follows. 1. Profile of SCHC could be identified 7 kinds thiazole and 11 kinds thiophene, the major produced compounds were thiophene, thiazolidine, 4-methyl-5-thiazole ethanol. 2. In the case of SCHC, relationship between changes of reaction conditions and the kind of produced components were as same, but produced amounts appeared the difference. Producing amount of complexed SCHC and caramellike note as well as oxygen containing heterocyclic compounds were high level more than high reaction temperature and long time reaction period. 3. Producing ratio of comparative simple structural SCHC were the highest level at reaction conditions of moisture content 50%, reaction temperature 100$^{\circ}C$ and reaction time 2 hours. Reaction conditions for the revelation of reaction meat flavor were below 110$^{\circ}C$ and less than 2 hours. 4. Relationship between moisture content and reaction temperature as well as reaction time had very relative relation. From the change of moisture content and reaction conditions could be obtained the simultaneously profile. Signal presentation for production of reaction meat flavor could be from extraction-separation-concentration of SCHC through simplification of raw-materials in the flavor and seasoning food industry.

Role for Volatile Branched-Chain and Other Fatty Acids in Species-Related Red Meat Flavors (휘발성 Branched-Chain과 n-Chain Fatty Acids가 육고기의 종을 결정하는 향기 성분으로서의 역할)

  • Jeong-Ok Kim;Yeong L. Ha;Robert. C. Lindsay
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.300-306
    • /
    • 1993
  • Speries-related meat flavors were investigated for red meats (bovine, porcine, caprine, and ovine). Volatile branched-chain fatty acids (VBCFAs) including 2-methylbutanoic, 3-methylbutanoic, 4-methylpentanoic, 2-ethylhexanoic, 4-methylhexanoic, 4-methyloctanoic, 6-methyloctanoic, 4-ethyloctanoic, 4-methylnonanoic, and 2-ethyldecanoic acids were identified in the meats from cow (bovine), pig (porcine), goats (caprine ; American white goat and Korean black goat), and lamb (ovine). Beef flavor of bovine meat was characterized by the basic meaty flavor, lacking in goaty and muttony flavor impacts due to low or absent in 4-methyl.octanoic and 4-ethyloctanoic acids. Porcine meat contained the least number of VBCFAs among sample species tested, and 3-methylbutanoic acid contributed to the unclean sweaty odor of pork. Caprine meat from Korean black and American white goats lacked in short VBCFAs (C5, C6, and C7) and contained 4-methyloctanoic and 4-ethyloctanoic acids contributing to the characteristic goaty flavor of caprine meat. Caprine meat flavor was distinctively characterized by 4-ethyloctanoic acid, while 4-methyloctanoic acid provides sweaty-muttony flavor to ovine meat. Although kinds of VBCFAs are same in two different varieties of caprine meats, meat sample from Korean black goat had stronger goaty odor and contained higher concentration of 4-ethyloctanoic acid than the meat sample from American white goat did.

  • PDF

Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade

  • Hoa, Van Ba;Seong, Pil-Nam;Cho, Soo-Hyun;Kang, Sun-Moon;Kim, Yun-Seok;Moon, Sung-Sil;Choi, Yong-Min;Kim, Jin-Hyoung;Seol, Kuk-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1448-1457
    • /
    • 2019
  • Objective: The present work aimed at evaluating the effects of carcass quality grade (QG) on the quality characteristics of pork meat according to Korean carcass QG system. Methods: Pork carcasses with varying in QG: 1+ (QG1+, n = 10), 1 (QG1, n = 10) and 2 (QG2, n = 10), were used to evaluate the relationship between carcass QG and meat quality. The meat quality traits, fatty acid profiles, flavor compounds and sensory qualities were measured on the longissimus dorsi muscle samples of these carcasses. Results: Pork meat of higher QG (QG1+) presented significantly higher fat content (5.43%), C18:2n-6 level (19.03%) and total unsaturated fatty acids content (62.72%). Also, the QG1+ meat was significantly higher in levels of classes of flavor compounds such as aldehydes, alcohols and hydrocarbons in comparison to those of the meat samples from the lower QG groups. The sensory evaluation results (flavor, juiciness, tenderness, and acceptability scores) of QG1+ meat was significantly higher than the QG1 and QG2 meats. The pork with lower QG (i.e., QG2) was found positively correlated to redness (r = 0.987), C18:1n-9 level (r = 1.000) but negatively correlated to the fat content (r = -0.949), and flavor (r = -0.870), juiciness (r = -0.861), tenderness (r = -0.862) and acceptability (r = -0.815) scores. Conclusion: The pork with higher QG had higher fat content, total unsaturated fatty acids and better eating quality, thus producing pork with higher QGs should be considered in order to satisfy the consumer's expectation.

Development of Natural Meat-like Flavor Based on Maillard Reaction Products (Maillard 반응 생성물을 이용한 천연 육류향의 제조)

  • Moon, Ji-Hye;Choi, In-Wook;Park, Yong-Kon;Kim, Yoon-Sook
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.129-138
    • /
    • 2011
  • Hydrolyzed wheat gluten (HWG) and low glutamic acid (Glu) hydrolyzed wheat gluten with different quantities of NaCl were reacted with several precursors to develop natural meat flavor based on Maillard reaction products (MRP). The MRP based flavors were analyzed for their pH, browning index, DPPH radical scavenging effect, and sensory properties. Synthetic meat flavor from low Glu hydrolyzed wheat gluten with 7% NaCl and ribose, cysteine, methionine, thiamin, lecithin, and garlic powder reacted at $140^{\circ}C$ for 30 min and were most favorable for a roasted meat flavor. Based on an omission test, cysteine was selected as the most important precursor for producing meat flavor compared to methionine, thiamine, and lecithin. Natural precursors including mushroom powder and fat medium were applied to compensate for the synthetic precursors. The optimum formula for meat flavor was 5% ribose, 7.7% cysteine, 6.9% garlic juice powder, 2.1% Lentinusedodes powder digested with protease, and 1% lard. The sulfuric pungent, oily, and salty attributes of the formula decreased and a mild roasted meat flavor was expressed.

Study on Sensory Characteristics and Consumer Acceptance of Commercial Soy-meat Products (콩고기의 관능적 특성 및 소비자 기호도 분석)

  • Kim, Mi Ra;Yang, Jeong-Eun;Chung, Lana
    • Journal of the Korean Society of Food Culture
    • /
    • v.32 no.2
    • /
    • pp.150-161
    • /
    • 2017
  • This study was conducted to identify sensory characteristics of soy-meat samples by trained panels and to observe the relationship between these sensory characteristics and consumer acceptability of the samples. Descriptive analysis was performed on eight samples; four types of patty style soy-meat samples (Soy-meat Patty; SP) made with a Ddukgalbi recipe (YSP, VSP, LSP, and SSP) and four types of Bulgogi style soy-meat samples (Soy-meat Bulgogi; SB) made with a Bulgogi recipe (YSB, VSB, LSB, and SSB). Seven panelists were trained, and they evaluated the appearance, odor/aroma, flavor/taste, texture/mouth feel, and after taste attributes of these samples. Forty attributes were generated by panelists, and 37 attributes were significantly different across products (p<0.05). The SB group was characterized by beef, leek, and garlic flavor as well a sweetness, denseness, slipperiness, chewiness, and pepper after taste. The SP group was characterized by roughness, particle size, rancid oil flavor, raw bean flavor, astringent, sourness, and adhesiveness. Consumer test (n=125) showed that the VSB sample had the highest scores for acceptability of appearance, flavor, texture, and overall liking. The PLSR results show that the attributes that were more positively associated with acceptance of soy-meat samples were beef taste, wetness, and chewiness, whereas the raw bean smell and rancid oil flavor attributes were negative.

Quality characteristics, fatty acid profiles, flavor compounds and eating quality of cull sow meat in comparison with commercial pork

  • Hoa, Van Ba;Cho, Soo-Hyun;Seong, Pil-Nam;Kang, Sun-Moon;Kim, Yun-Seok;Moon, Sung-Sil;Choi, Yong-Min;Kim, Jin-Hyoung;Seol, Kuk-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.640-650
    • /
    • 2020
  • Objective: Although the slaughter of cull sows (CS) for human consumption and meat products processing appears quite common throughout the world, relatively limited scientific information regarding the meat quality parameters of this pork type is available. The present study aimed at providing the technological quality characteristics and eating quality of CS meat, and comparing with those of commercial pork. Methods: Longissimus thoracis et lumborum muscle samples of CS and finisher pigs (FP) at 24 h postmortem were collected and used for investigation of the meat quality traits (pH, color, shear force, cooking loss, water holding capacity), fatty acids, flavor compounds and sensory characteristics. Results: The CS meat had significantly higher moisture content (p = 0.0312) and water holding capacity (p = 0.0213) together with lower cooking loss (p = 0.0366) compared to the FP meat. The CS meat also exhibited higher (p = 0.0409) contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFA, p = 0.0213) and more desirable PUFA/total saturated fatty acids ratio (p = 0.0438) compared to the FP meat. A total of 56 flavor compounds were identified, amongst the amount of 16 compounds differed significantly between the two pork groups. Most of the PUFA-derived flavor compounds (e.g., hexanal, benzaldehyde, and hydrocarbons) showed higher amounts in the CS meat. While, 3-(methylthio)-propanal and 4-methylthiazole associated with pleasant aromas (meaty and roast odor notes) were only found in the FP meat. Furthermore, no differences were reported by panelists for flavor, juiciness, tenderness, and acceptability scores between the two pork groups studied. Conclusion: The sow meat exhibited better technological quality and its eating quality could be comparable to the commercial pork. This study provides meat processors and traders with valuably scientific information which may help to improve the utilization and consumption level of sow meat.

Effects of Various Additives on the Volatile Compounds of Cooked Oil with Mixture Meat(Chicken and Pork) (유 가열 혼합육(계육, 돈육)의 휘발성 성분 및 각종 첨가물의 영향)

  • 홍종만
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.2
    • /
    • pp.169-176
    • /
    • 1990
  • Effects of metal chelating agents and metal ions on the volatile substance of cooked oil with chicken and pork mixture meat were examined by chemical analysis and sensory test. The addition of Na-tripolyphosphate(Na-TPP) to chicken and pork mixture meat increased the amount of H2S among volatiles evolved during cooking but decreased that of volatile carbonyl compounds(VCC) This treatment enhanced meat flavor in cooked oil with chicken and pork mixture. It was recognized that the increase in Ha5 evolution was caused by the rise of pH value. On the contrary cupric ion produced a negative effect on the production of chicken and pork mixture meat flavor and this addition increased VCC and TBA value. Other metal chelating agents such as citric acid, phytic acid and EDTA, provided the same results as Na-TPP. It was supposed that these phenomena were attributable to the chelating action to metal prooxidant in mixture meat at could be concluded that a proper evolution of H2S and protection against lipid oxidation during cooking were important to produce an excellent chicken and pork mixture meat flavor.

  • PDF

Development of Meat-like Flavor by Maillard Reaction with Addition of Natural Flavoring Materials (천연 조미향상물질의 첨가에 의한 Maillard 반응에서 Meat-like Flavor의 개발)

  • Ko, Soon-Nam;Nam, Hee-Sop;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.839-846
    • /
    • 1997
  • Addition of three natural flavoring materials, hydrolyzed vegetable protein (HVP), hydrolyzed animal protein (HAP) and yeast extract (YE), into 0.2 M cystine-0.1 M lactose-0.1 M maltose solution (control) was studied for development of meat-like flavor by Maillard reaction. The HVP, HAP and YE were added individually at various concentrations and were mixed at selected concentration in order to compare their effects. The absorbance, color, sensory characteristics and volatile compounds of the solutions after the reaction at $100^{\circ}C$ for 8 hr were measured. The results showed that the absorbances of reaction solution at 420 nm and 278 nm were increased as reaction time and the concentration of the natural flavoring material increased. Also ‘L’ values of reaction solutions added with HVP, HAP or YE decreased while the ‘b’ value increased slightly. From the results of sensory evaluation 1.16% HVP, 0.94% HAP, 1.48% YE or 1.16% HVP + 0.94% HAP were selected as the appropriate substrates for the meat-like flavor development. The volatile compounds identified by GC/MS for the control and those added with 1.16% HVP or 1.16% HVP+0.94% HAP were 1 hydrocarbons, 9 aldehydes, 5 ketones, 1 ester, 5 alcohols, 2 aromatics(benzene), 2 furans, 1 sulfur compound.

  • PDF