• Title/Summary/Keyword: meat characteristic

Search Result 101, Processing Time 0.03 seconds

Surface Reflectance Related with Color Characteristics for Pig × Wild Boar Meat

  • Irie, M.;Nishimori, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1321-1325
    • /
    • 2001
  • Color characteristics of pig ${\times}$ wild boar meat were determined with a fiber-optic spectrophotometer. The spectrophotometric characteristic of reduced-myoglobin observed after cutting immediately changed to the spectrophotometric characteristic of oxymyoglobin after 15 minutes of cutting. The spectrophotometry at 400 to 700 nm after 30, 45, 60, 90 and 120 minutes of cutting changed slightly. Compared with M. longissimus thoracis, M. rhomboideus had higher reflectance around 400 nm and from 650 to 1,100 nm and M. spinalis was lower in the visible light region after 60 minutes of cutting. The pig ${\times}$ wild boar meat was similar in reflectance shape with pork but was lower in intensity. The differences depended on the anatomical location. The M. rhomboideus from pig ${\times}$ wild boar had greatly lower reflectance than that from pig, the M. longissimus thoracis reflectance was lower, but M. spinalis reflectance hardly differed. These results showed that pig ${\times}$ wild boar meat had no special characteristic of blooming but had distinguishing characteristic of meat color among anatomical locations.

Characterization of Volatile Compounds in Donkey Meat by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Chemometrics

  • Mengmeng Li;Mengqi Sun;Wei Ren;Limin Man;Wenqiong Chai;Guiqin Liu;Mingxia Zhu;Changfa Wang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.165-177
    • /
    • 2024
  • Volatile compounds (VOCs) are an important factor affecting meat quality. However, the characteristic VOCs in different parts of donkey meat remain unknown. Accordingly, this study represents a preliminary investigation of VOCs to differentiate between different cuts of donkey meat by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics analysis. The results showed that the 31 VOCs identified in donkey meat, ketones, alcohols, aldehydes, and esters were the predominant categories. A total of 10 VOCs with relative odor activity values ≥1 were found to be characteristic of donkey meat, including pentanone, hexanal, nonanal, octanal, and 3-methylbutanal. The VOC profiles in different parts of donkey meat were well differentiated using three- and two-dimensional fingerprint maps. Nine differential VOCs that represent potential markers to discriminate different parts of donkey meat were identified by chemometrics analysis. These include 2-butanone, 2-pentanone, and 2-heptanone. Thus, the VOC profiles in donkey meat and specific VOCs in different parts of donkey meat were revealed by HS-GC-IMS combined with chemometrics, whcih provided a basis and method of investigating the characteristic VOCs and quality control of donkey meat.

Comparison of Postmortem Meat Quality and Consumer Sensory Characteristic Evaluations, According to Porcine Quality Classification

  • Nam, Yun-Ju;Choi, Young-Min;Jeong, Da-Woon;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.307-311
    • /
    • 2009
  • This study examined variations in postmortem meat quality characteristics and consumer sensory evaluations of different pork quality classes in fresh and cooked meat. Pale, soft, and exudative (PSE) meat had the highest drip loss, lightness, and the lowest $pH_{24\;hr}$ whereas dark, firm, and dry (DFD) meat showed the opposite results. When the fresh meat was evaluated by consumer panelists, they could only distinguish the PSE class of meat and it scored lowest in overall acceptability. However, the panelists did not consider cooked PSE or DFD pork to be unacceptable overall, indicating that consumers cannot distinguish the quality of cooked pork.

Study on the Change of Lipid Peroxides Amount While Beef Bulgogi Cocking (우육(牛肉)의 불고기 조리시 과산화지질의 변화에 관한 연구)

  • Shin, Duk-Kue
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.75-87
    • /
    • 1989
  • Study to report this result that state of lipid peroxides while beef Bulgogi Coocking of general-seasoning, sale-seasoning, each flavour's characteries. Raw meat show high lipid peroxides amount and high increasing in heat and antioxidative effected by flavour about lipid peroxidies change existence by beef Bulgogi seasoning. Change of lipid peroxides are significant increased in meat cold storage and cold storage and cold storage heat meat after while 30 minute after seasoned and reduced 9 hour - 33 hour cold storage raw meat, that change of lipid peroxides by cooking time. every condition by adding soften were revealed lipid peroxides, reduce. Lipid peroxide change are very high while no-sugar in raw meat and not a stone look in 9-hour raw-meat after seasone about antioxidative effect by each flavour characteristic TBA showed very high not take parched seasone seeds item about 30-minute cold storage beat raw-meat and high lipid peroxides revealed increase in not take wine item, not take a pear item, in 9 hour cold storage heat-meal and it showed little amount not-sugar item, no opepper item. According to high lipid peroxides change reduced high after seasoned cold storage stage in Korea traditional Bulgogi Cooking and thought high that action of antioxidative lipid peroxides wine and a pear in flavour.

Flavour Chemistry of Chicken Meat: A Review

  • Jayasena, Dinesh D.;Ahn, Dong Uk;Nam, Ki Chang;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.732-742
    • /
    • 2013
  • Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of ${\alpha}$-tocopherol in chicken meat.

Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep

  • Li, Xiu;Amadou, Issoufou;Zhou, Guang-Yun;Qian, Li-Yan;Zhang, Jian-Ling;Wang, Dong-Liang;Cheng, Xiang-Rong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.527-540
    • /
    • 2020
  • Donkey in China is well known for its draft purpose and transportation; however, donkey meat has attracted more and more consumers in recent years, yet it lacks sufficient information on its flavor components compared to other main meats. Therefore, in this study, volatile flavor compounds in neck meat of donkey, swine, bovine, and sheep were classified by electronic nose, then confirmed and quantified by gas chromatography-mass spectrometry. High-performance liquid chromatography (HPLC) and gas chromatography were used to quantify free fatty acid, amino acid, and flavor nucleotide. A total of 73 volatile compounds were identified, and aldehydes were identified as the characteristic flavor compounds in neck meat of donkey, bovine, swine and sheep in proportion of 76.39%, 46.62%, 31.64%, and 35.83%, respectively. Particularly, hexanal was the most abundant volatile flavor. Compared with other neck meat, much higher unsaturated free fatty acids were present in donkeys. Furthermore, neck meat of donkeys showed essential amino acid with highest content. Thus, special flavor and nutrition in donkey neck meat make it probably a candidate for consumers in other regions besides Asia.

Genome-wide association studies on collagen contents trait for meat quality in Hanwoo

  • KyeongHye Won;Dohyun Kim;Inho Hwang;Hak-Kyo Lee;Jae-Don Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.311-323
    • /
    • 2023
  • Beef consumers valued meat quality traits such as texture, tenderness, juiciness, flavor, and meat color that determining consumers' purchasing decision. Most research on meat quality has focused on marbling, a key characteristic related to meat eating quality. However, other important traits such as meat texture, tenderness, and color have not much studied in cattle. Among these traits, meat tenderness and texture of cattle are among the most important factors affecting quality evaluation of consumers. Collagen is the main component of connective tissues.It greatly affects meat tenderness. The objective of this study was to determine significant variants and candidate genes associated with collagen contents trait (total collagen) through genome-wide association studies (GWAS). Phenotypic and genomic data from 135 Hanwoo were used. The BLUPF90 family program and GRAMMAR method for GWAS were applied in this study. A total of 73 potential single nucleotide polymorphisms (SNPs) showed significant associations with collagen content. They were located in or near 108 candidate genes. TMEM135 and ME3 genes were identified to have the most significant SNPs associated with collagen contents trait. Data indicated that these genes were related to collagen. Biological processes and pathways for the prediction of biological functions of candidate genes were confirmed. We found that candidate genes were involved in positive regulation of CREB transcription factor activity and actin cytoskeleton related to tenderness and texture of beef. Three genes (CRTC3, MYO1C and MYLK4) belonging to these biological functions were related to tenderness. These results provide a basis for improving genomic characteristics of Hanwoo for the production of tender beef. Furthermore, they could be used they could be used as an index to select desired traits for consumers.

Advancements in Sustainable Plant-Based Alternatives: Exploring Proteins, Fats, and Manufacturing Challenges in Alternative Meat Production

  • Minju Jung;YouKyeong Lee;Sung Ok Han;Jeong Eun Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.994-1002
    • /
    • 2024
  • The rise in plant-based food consumption is propelled by concerns for sustainability, personal beliefs, and a focus on healthy dietary habits. This trend, particularly in alternative meat, has attracted attention from specialized brands and eco-friendly food companies, leading to increased interest in plant-based alternatives. The dominant plant-based proteins, derived mainly from legumes, include soy protein isolates, which significantly impact sensory factors. In the realm of plant-based fats, substitutes are categorized into fat substitutes based on fats and fat mimetics based on proteins and carbohydrates. The production of these fats, utilizing gums, emulsions, gels, and additives, explores characteristics influencing the appearance, texture, flavor, and storage stability of final plant-based products. Analysis of plant-based proteins and fats in hamburger patties provides insights into manufacturing methods and raw materials used by leading alternative meat companies. However, challenges persist, such as replicating meat's marbling characteristic and addressing safety considerations in terms of potential allergy induction and nutritional supplementation. To enhance functionality and develop customized plant-based foods, it is essential to explore optimal combinations of various raw materials and develop new plant-based proteins and fat separation.

Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens

  • Chen, Yulian;Qiao, Yan;Xiao, Yu;Chen, Haochun;Zhao, Liang;Huang, Ming;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.855-864
    • /
    • 2016
  • The objective of this study was to compare the physicochemical and nutritional properties of breast and thigh meat from commercial Chinese crossbred chickens (817 Crossbred chicken, 817C), imported commercial broilers (Arbor Acres broiler, AAB), and commercial spent hens (Hyline Brown, HLB). The crossbred chickens, commercial broilers and spent hens were slaughtered at their typical market ages of 45 d, 40 d, and 560 d, respectively. The results revealed that several different characteristic features for the three breeds. The meat of the 817C was darker than that of the other two genotypes. The 817C were also characterized by higher protein, lower intramuscular fat, and better texture attributes (cooking loss, pressing loss and Warner-Bratzler shear force [WBSF]) compared with AAB and HLB. The meat of the spent hens (i.e. HLB) was higher in WBSF and total collagen content than meat of the crossbred chickens and imported broilers. Furthermore, correlation analysis and principal component analysis revealed that there was a clear relationship among physicochemical properties of chicken meats. With regard to nutritional properties, it was found that 817C and HLB exhibited higher contents of essential amino acids and essential/non-essential amino acid ratios. In addition, 817C were noted to have highest content of microelements whereas AAB have highest content of potassium. Besides, 817C birds had particularly higher proportions of desirable fatty acids, essential fatty acids, polyunsaturated/saturated and (18:0+18:1)/16:0 ratios. The present study also revealed that there were significant differences on breast meat and thigh meat for the physicochemical and nutritional properties, regardless of chicken breeds. In conclusion, meat of crossbred chickens has some unique features and exhibited more advantages over commercial broilers and spent hens. Therefore, the current investigation would provide valuable information for the chicken meat product processing, and influence the consumption of different chicken meat.