• Title/Summary/Keyword: measurement validation

Search Result 697, Processing Time 0.024 seconds

Experimental studies of validation and stability of Sweet Bee Venom using HPLC (Sweet BV의 조제물 농도분석 및 안정성 확인을 위한 시험적 연구)

  • Kang, Kye-Sung;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.12 no.4
    • /
    • pp.33-50
    • /
    • 2009
  • Objectives : This study was conducted to confirm validation and stability of concentration analysis method of pure melittin (Sweet Bee Venom-Sweet BV) extracted from the bee venom by utilizing protein isolation method of gel filtration. Methods : All experiments were conducted at Biotoxtech, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP). Standard solutions of melittin (SIGMA, USA) and test substances were dispensed and were analyzed with HPLC for Sweet BV to secure the validation of analysis. Results : 1. Measurement of system suitability of Sweet BV satisfied criterion of below 3%. 2. Confirming Linearity of Sweet BV in 10-200${\mu}g/m\ell$ solution yielded correlation coefficient (r) of 0.995 and accuracy of 85-115% which satisfy criterion. 3. Measurement of Specificity of Sweet BV didn't yield any substance affecting the peak of test substances, but detected at 21.22min verified as the test substance. 4. Confirming Intra-day of Sweet BV, accuracy and precision of 0.1, 100${\mu}g/m\ell$ were 105.70, 95.81 and 0.66, 0.73, respectively, satisfying both criteria of accuracy (85-115%) and precision (within 10%). 5. To measure Stability in autosampler, all samples used in Intra-day reproducibility sat in the autosampler for five hours and were re-analyzed. Both variability and precision satisfied the criteria. 6. Homogeneity of Sweet BV (0.1, 100${\mu}g/m\ell$) at upper, middle, and lower layers all satisfied the accuracy and precision criteria. 7. Stability of Sweet BV (0.1, 100${\mu}g/m\ell$) at room temperature for four hours and refrigerated for 7 days all satisfied the criterion. 8. For the measurement of Quality control, QC samples measured on the first and eighth day all satisfied accuracy and precision criteria. Conclusion : Above experiment data satisfies validation and stability of concentration analysis method of Sweet BV.

Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle Using Validation Model of Performance Measurements (원전 터빈사이클 성능 데이터의 검증 모델에 의한 성능분석 기법의 개발)

  • Kim, Seong-Geun;Choe, Gwang-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1625-1634
    • /
    • 2000
  • Verification of measurements is required for precise evaluation of turbine cycle performance in nuclear power plant. We assumed that initial acceptance data and design data of the plant could provide correlation information between performance data. The data can be used as sample sets for the correct estimation model of measurement value. The modeling was done practically by using regression model based on plant design data, plant acceptance data and verified plant performance data of domestic nuclear power plant. We can construct more robust performance analysis system for an operation nuclear power plant with this validation scheme.

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

Blood pressure measurements and hypertension in infants, children, and adolescents: from the postmercury to mobile devices

  • Lim, Seon Hee;Kim, Seong Heon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • A mercury sphygmomanometer (MS) has been the gold standard for pediatric blood pressure (BP) measurements, and diagnosing hypertension is critical. However, because of environmental issues, other alternatives are needed. Noninvasive BP measurement devices are largely divided into auscultatory and oscillometric types. The aneroid sphygmomanometer, the currently used auscultatory method, is inferior to MS in terms of limitations such as validation and regular calibration and difficult to apply to infants, in whom Korotkoff sounds are not audible. The oscillometric method uses an automatic device that eliminates errors caused by human observers and has the advantage of being easy to use; however, owing to its measurement accuracy issues, the development of an international validation protocol for children is important. The hybrid method, which combines the auscultatory and electronic methods, solves some of these problems by eliminating the observer bias of terminal digit preference while maintaining measurement accuracy; however, the auscultatory method remains limited. As the age-related characteristics of the pediatric group are heterogeneous, it is necessary to reconsider the appropriate BP measurement method suitable for this indication. In addition, the mobile application-based BP measurement market is growing rapidly with the development of smartphone applications. Although more research is still needed on their accuracy, many experts expect that mobile application-based BP measurement will effectively reduce medical costs due to increased ease of access and early BP management.

(A Study on Software Quality Metric Methodology and Application for Software Quality Measurement) (소프트웨어 품질측정을 위한 소프트웨어 품질매트릭 방법론과 적용 연구)

  • 이성기
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.90-112
    • /
    • 1996
  • Research issues in software engineering in recent may be object oriented methodology and software quality. Since Halstead has proposed metric-software science in 1977, software quality area has been studied in steady but inactively until 1980s. As international standards such as ISO 9000-3, 9126 were enacted in 1990s early, interest in software quality is increased but many problems such as how to validate metric, measure quality or apply metric are remained. This paper proposes software quality metric methodology which software developer or project manager can use in measuring quality and validating metric during software development. The methodology is classified by several phases: establishment of quality requirement, identification of quality metric, data collection, metric implementation, metric validation. In order to show its applicability, test program, metrics and data are applied to each phase of the methodology. Consideration of this methodology as a methodology for software quality measurement similar to development methodology for software development is needed.

  • PDF

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach

  • Pradana, Satrio;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.49-57
    • /
    • 2018
  • The main objective of this paper is come up with methodology approach for FPGA-based system in verification and validation lifecycle regarding software reliability using system engineering approach. The steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the requirements of the system as well as gain understanding of the current life cycle and V&V activities of FPGA based-system. The re-engineering method is carried out to get a new methodology approach of software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a given FPGA-based system, the following steps are executed as; requirements definition and measurement, evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new methodology approach for software reliability measurement using software reliability growth model is developed.

A Study on the SAR Measurement System Validation at 150 MHz Band (150 MHz 대역에서의 SAR 측정시스템의 유효성 연구)

  • Choi, Donggeun;Kim, Kihwea;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1008-1016
    • /
    • 2013
  • SAR measurement which was applied only to the mobile phone has been expanded in the Korean radio regulation law to the portable wireless communication equipments within 20 cm from the human body since Jan. 2012. The two-way radio operating at 150 MHz frequency band was newly included following the revised radio regulation in the target equipment of measurement. SAR measurement system at 150 MHz satisfying this regulation is necessary accordingly for SAR conformity assessment. The international SAR measurement standard(IEC 62209-2) includes the evaluation method on frequencies above 300 MHz, and the commercial SAR measurement system can measure SAR above 300 MHz only. The size of the reference dipole antenna(760 mm, return loss: -27.57 dB) and flat phantom ($1,300 mm(L){\times}900 mm(W){\times}200 mm(H)$), targeted SAR values for numerical analysis(1 g: 1.08 W/kg, 10 g: 0.77 W/kg) for SAR validation evaluation at 150 MHz frequency are proposed in this paper. The suggested dipole antenna and flat phantom are assembled and used to verify the conformity assessment of commercial SAR measurement system. The measured SAR values of 1 g and 10 g were obtained respectively to be 1.13 W/kg, 0.81 W/kg, and they satisfied the effective range(within ${\pm}10$ %) of IEC international standard. The standards based on this study are expected to be used for the domestic SAR measurement standard and IEC(International Electrotechnical Commission) international standard.

Case study on the Accuracy Assessment of the rainrate from the Precipitation Radar of TRMM Satellite over Korean Peninsula

  • Chung, Hyo-Sang;Park, Hye-Sook;Noh, Yoo-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.103-106
    • /
    • 1999
  • The Tropical Rainfall Measuring Mission(TRMM) is a United States-Japan project for rain measurement from space. The first spaceborne Precipitation Radar(PR) has been installed aboard the TRMM satellite. The ground based validation of the TRMM satellite observations was conducted by TRMM science team through a Global Validation Program(GVP) consisted of 10 or more ground validation sites throughout the tropics. However, TRMM radar should always be validated and assessed against reference data to be used in Korean Peninsula because the rainrates measured with satellite varies by time and space. We have analyzed errors in the comparison of rainrates measured with the TRMM/PR and the ground-based instrument i.e. Automatic Weather System(AWS) by means of statistical methods. Preliminary results show that the near surface rainrate of TRMM/PR are highly correlated with ground measurements especially for the very deep convective rain clouds, though the correlation is changed according to the type and amount of precipitating clouds. Results also show that TRMM/PR instrument is inclined to underestimate the rainrate on the whole over Korea than the AWS measurement for the cases of heavy rainfall.

  • PDF

The Development of a Signal Validation Scheme for the Redundant Multi-Channel Measurement System (다중채널 측정계통의 신호검증기법 개발)

  • Hwang, In-Koo;Na, Nan-Ju;Kwon, Kee-Choon;Ham, Chang-Shik
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.367-373
    • /
    • 1994
  • It is necessary to adopt a simple signal validation for avoiding the complexity of algorithm and verification in the design process of the instrumentation and control system in nuclear plants. This paper suggests a signal validation method developed on the basis of consistency checking for the multi-channel measurement system without any analytic process model. It includes a simplified algorithm for estimating the fixed bias error of each channel and a weighted averaging method. The weighting factor of each channel is updated according to its calculated bias error. The developed method has been tested to verify its performance through several input scenarios.

  • PDF