• 제목/요약/키워드: measurement systems

검색결과 4,952건 처리시간 0.032초

침적식 온라인 굴절계를 이용한 알코올 농도의 측정 (Concentration Measurement of Alcohol Solution Using Immersion-Type On-Line Refractometer)

  • 정옥진;김영한
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.473-477
    • /
    • 2003
  • An immersion-type on-line refractometer useful for the in-situ measurement of chemical composition and temperature is developed, and its performance is examined by applying the refractometer to known alcohol solution having concentrations between 0 vol. % and 25 vol. %. Because refractive index and temperature are measured simultaneously, it is possible to compensate the effect of temperature for fast and direct measurement. The outcome of composition measurement for the different concentrations of alcohol solution indicates that the device is suitable for the chemical composition measurement by yielding stable and reproducible reading.

Anslysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung Hwan;Freivalds, Andris;Lee, Myun W.
    • 대한인간공학회지
    • /
    • 제14권1호
    • /
    • pp.69-81
    • /
    • 1995
  • Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for the analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$^{TM}$, Virtual technologies) with eighteem joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented inte- grating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an efficient and cost-effective solution to task analysis of manual tool handling tasks.s.

  • PDF

복합체계의 정량적 상호운용성 평가 방법론 연구 (A Study on the Quantitative Interoperability Measurement Methodology of System of Systems)

  • 이진성;정찬기
    • 정보화연구
    • /
    • 제9권2호
    • /
    • pp.167-176
    • /
    • 2012
  • 한국군은 LISI 모델을 활용하여 소요제기 및 획득단계에서 체계의 상호운용성 수준측정 및 평가를 실시하고 있다. 그러나 LISI 모델은 체계 간 상호운용성 평가에 초점이 맞추어져 있기 때문에 다수 체계가 유기적으로 연결된 복합체계의 상호운용성 평가에는 제한적이다. 또한 LISI 모델은 정량적이기 보다는 정성적인 접근방법이기 때문에 상호운용성 의사결정에 가시적인 정보 제공에는 한계가 있다. 이에 대한 해결책으로 본 연구에서는 복합체계의 정량적인 상호운용성 평가 방법론을 제안한다. 제안 방법론에서는 아키텍처를 활용하여 임무 프로세스를 지원하는 복합체계가 식별되고, 체계의 다중도와 유사도 계수를 기반으로 상호운용성 평가가 이루어진다. 그리고 제안 방법론의 효용성을 보이기 위해 사례연구 결과를 제시한다.

A Measurement Technique for Intelligent System

  • 전성해
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.361-363
    • /
    • 2007
  • Using intelligent systems, many users do effectively their works. In general, the effective usages of the systems have to possess the usability and accuracy. So, we need some measurements for evaluating the performance of the criteria. But, in most cases, objective measurements for the evaluation are not. In this paper, we propose a measurement technique for objective evaluated measuring of intelligent systems using probability measure.

  • PDF

고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경 (Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging)

  • 천완희;이승우;안진우;권대갑
    • 반도체디스플레이기술학회지
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

초음파 센서와 카메라를 이용한 거리측정 시스템 설계 (Design of range measurement systems using a sonar and a camera)

  • 문창수;도용태
    • 센서학회지
    • /
    • 제14권2호
    • /
    • pp.116-124
    • /
    • 2005
  • In this paper range measurement systems are designed using an ultrasonic sensor and a camera. An ultrasonic sensor provides the range measurement to a target quickly and simply but its low resolution is a disadvantage. We tackle this problem by employing a camera. Instead using a stereoscopic sensor, which is widely used for 3D sensing but requires a computationally intensive stereo matching, the range is measured by focusing and structured lighting. In focusing a straightforward focusing measure named as MMDH(min-max difference in histogram) is proposed and compared with existing techniques. In the method of structure lighting, light stripes projected by a beam projector are used. Compared to those using a laser beam projector, the designed system can be constructed easily in a low-budget. The system equation is derived by analysing the sensor geometry. A sensing scenario using the systems designed is in two steps. First, when better accuracy is required, measurements by ultrasonic sensing and focusing of a camera are fused by MLE(maximum likelihood estimation). Second, when the target is in a range of particular interest, a range map of the target scene is obtained by using structured lighting technique. The systems designed showed measurement accuracy up to 0.3[mm] approximately in experiments.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

Auto-Measurement of Induction Motor Parameters

  • Kim Kyung-Seo;Byun Sung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the parameter measurement methods for high performance drive of induction motors, which are suitable for the self-commissioning function of commercial inverters. In this study, some factors that affect the accuracy of parameter measurement are examined. Measuring methods and conditions that are best fit to each parameter measurement procedure are then proposed. All the measurement procedures can be done without any auxiliary equipment, so that those can be easily adopted as self-commissioning functions of commercial inverters. To improve the measuring accuracy, least square approximation methods are adopted during the measurement procedure. The validity of the proposed methods are confirmed through experiments.

시분할 측정기법을 이용한 임베디드 족압 측정 시스템 설계 (Development of an Embedded Foot Pressure Measurement System Using Time Division Measurement Method)

  • 김시경
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this paper, an embedded foot pressure measurement system is proposed to measure foot pressure based on the embedded Linux system. To measure foot pressure data and to evaluate foot pressure distribution for the different insoles, FSR sensor, A/D converter, iPAQ PDA, and a time division measurement method are employed in the system. Utilizing this system, the foot pressure analysis has been performed for the different four shoes. The number of foot pressure/voltage conversion circuits are drastically decreased by the proposed time division measurement method from 406 to 14. The experimental results for the sandal, slipper, oxford shoes and sneakers demonstrate that the proposed system successfully performs the foot pressure measurement.

머신 비전을 이용한 ALC 블록 생산공정의 자동 측정 시스템 개발 (Development of Automatic ALC Block Measurement System Using Machine Vision)

  • 엄주진;허경무
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.494-500
    • /
    • 2004
  • This paper presents a machine vision system, which inspects the measurement of the ALC block on a real-time basis in the production process. The automatic measurement system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. Images obtained by this system was processed by an algorithm, specially designed for an enhanced measurement accuracy. For the realization of the proposed algorithm, a preprocessing method that can be applied to overcome uneven lighting environment, boundary decision method, unit length decision method in uneven condition with rocking objects, and a projection of region using pixel summation are developed. From our experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied by using the proposed method.