• 제목/요약/키워드: measurement system

Search Result 14,607, Processing Time 0.044 seconds

Development of a real-time mobile gamma-ray measurement system for shipboard use

  • Chang-Jong Kim;Mee Jang;Hyuncheol Kim;Jong-Myoung Lim;Wanno Lee;Gyu-Seong Cho
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4077-4082
    • /
    • 2023
  • Large areas must be rapidly screened to monitor radiation in marine environments. For this purpose, this study developed a mobile real-time gamma-ray measurement system for shipboard use and evaluated its performance. The system was developed to measure engine or generator cooling water by installing a canister inside the ship. The minimum detectable activity of the system is about 0.8 Bq/L for a 60 s measurement period, and real-time data transmission and remote control are possible. The system was tested in the field and is currently being installed and operated on ships in service. Such a ship-based real-time gamma-radiation measurement system is suitable for a wide range of marine radiation surveillance applications and is expected to be rapidly deployed.

측정 프로세스의 변동 요인 조사 방법 개발 (Development of an Investigation Method for Variation Factors of Measurement Processes)

  • 최인수;강창욱
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.72-81
    • /
    • 2016
  • There can be included a variety of uncertainties in all measurement results whether we can perceive or not on the causes. These uncertainties may end up in lowering the reliability of measurement results and also deteriorate the level of quality. For the purpose, we tried to combine the strengths of measurement uncertainty and measurement system analysis together to present a practical flowchart so as to verify those potential variation factors in general measurement processes. As a case study, we did an experiment and gathered data on the length between two holes of an engine cylinder head which is a core part for vehicles with a coordinate measuring machine and estimated nine uncertainty factors of it. Consequently, it was identified that the four primary factors among the nine which were related to the measurement standard, random errors or spread of the repeat measurements, differences between the coefficients of thermal expansion and the environment especially had been the influence around the laboratory. Since it is impossible to analyze the equipment and appraisal variations respectively through the only measurement uncertainty, we have used the measurement system analysis following the flowchart. Showing the result of being just about 0.5% lower for the appraisal variation, and the equipment variation occupied about 7% for the total Gage R&R. Through this research, we have come to a conclusion that much more detail analysis on variation factors can be possible to be identified in measurement processes by using the developed flowchart which is composed of measurement uncertainty and measurement system analysis. Therefore, we expect engineers who are involved in quality and measurements to utilize this developed method.

데오드라이트 시스템의 측정 정확도에 대한 연구(III) - 시준거리 3 m에서 기준자 거리에 따른 측정 정도 (A Study on Measurement Accuracy of Theodolite System(III) - A Measurement System Accuracy depending on a Distance of Scale Bar on the Distance 3 m between two Theodolites)

  • 윤용식;이동주;윤인진
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.48-54
    • /
    • 2005
  • The theodolite system consists of two theodolites, a scale bar and a target bu. A measurement accuracy of theodolite system is affected by a measurement distance of each equipment. This study was performed fir measuring an accuracy when the distance from theodolite to scale bar was changed 2~ 6 m on two theodolites distance 3 a The results showed thai the measurement accuracy could be $\pm$0.021 mm when the distance from theodolite to target was 2,3 and 6 n Specially, it was found that the maximum measurement accuracy was 10.017mm on theodolite collimation distance 3m and the distance 4 m of the theodolite and scale bar.

정밀 삼차원 측정을 위한 백색광 간섭 광학 프로브 개발 (Optical Probe of white Light Interferometry for Precision Coordinate Metrology)

  • 김승우;진종한;강민구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Demand for high precision measurement of large area is increasing in many industrial fields. White-light Scanning Interferometer(WSI) is a well-known method for 3D profile measurement. However WSI has some limitations in a measurement range because of the sensing mechanism. Therefore, in this paper we use a heterodyne laser interferometer to get over the limitations of a short measurement range in WSI, We suggest a new WSI system combined with heterodyne laser interferometer. This system is aimed at eliminating Abbe error with measuring the focus point directly. With the use of triggering functionality of WSI, we can use this system as a probe of a precision stage such as a probe of CMM. The suggested system gives a repeatability of 87 nm in the absolute distance measurement test under the laboratory environment.

  • PDF

데오드라이트 시스템의 측정 정확도에 대한 연구(II) -기준자 측정 높이에 따른 측정 정확도 (A Study on Measurement Accuracy of Theodolite System(II) -A Measurement Accuracy for a Height of Scale Bar)

  • 윤용식;이동주;정종길
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.37-43
    • /
    • 2004
  • A measurement accuracy of theodolite system may be affected by a measurement environment, a measurement distance change and so on. This study was performed for measuring an accuracy when the height of scale bar is changed 0.05m, 0.5m, 1m and 1.5m under the distance 3m between two theodolites, the distance 4m from the theodolite system to scale bar and the distance 5m from the thodolite system to the horizontal target bar. And we could know that the best height is 0.05m and 1m.

디지털 화상처리를 이용한 부유식 구조물의 3차원운동 계측법에 관한 연구 (A Study on Three-Dimensional Motion Tracking Technique for Floating Structures Using Digital Image Processing)

  • 조효제;도덕희
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.121-129
    • /
    • 1998
  • A quantitative non-contact multi-point measurement system is proposed to the measurement of three-dimensional movement of floating vessels by using digital image processing. The instantaneous three-dimensional movement of a floating structure which is floating in a small water tank is measured by this system and its three-dimensional movement is reconstructed by the measurement results. The validity of this system is verified by position identification for spatially distributed known positional values of basic landmarks set for the camera calibration. It is expected that this system is applicable to the non-contact measurement for an unsteady physical phenomenon especially for the measurement of three-dimensional movement of floating vessels in the laboratory model test.

  • PDF

Experimental Measurement System for 3-6 GHz Microwave Breast Tomography

  • Son, Seong-Ho;Kim, Hyuk-Je;Lee, Kwang-Jae;Kim, Jang-Yeol;Lee, Joon-Moon;Jeon, Soon-Ik;Choi, Hyung-Do
    • Journal of electromagnetic engineering and science
    • /
    • 제15권4호
    • /
    • pp.250-257
    • /
    • 2015
  • This paper presents an experimental measurement system for 3-6 GHz microwave tomography (MT) of the breast. The measurement system is constructed as a minimal test bed to verify key components such as the sensing antennas, radio frequency (RF) transceiver, sensing mechanism, and image reconstruction method for our advanced MT system detecting breast cancer at an early stage. The test bed has eight RF channels operating at 3 to 6 GHz for high spatial resolution and a two-axis scanning mechanism for three-dimensional measurement. The measurement results from the test bed are shown and discussed.

측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석 (Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise)

  • 윤재승;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

고압전력선 통신 채널 특성 측정 시스템 개발 (Development of channel characteristics measurement system for Medium Voltage Power Line Grid)

  • 이재조;이원태;오휘명;김관호;이대영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2640-2642
    • /
    • 2002
  • In this paper, we show the channel characteristics measurement system the frequency range up to 30MHz for medium voltage Power Line Grid. Power line channel characteristics are investigated by means of various measurement instruments. Measurement system consists of medium voltage coupler, impedance measurement part, noise measurement part, voltage sensing part and communication part. Measured data will be used for PLC channel modeling and PLC network system design.

  • PDF

전차선 편위 및 높이 측정 시스템 개발에 관한 연구 (A Study on the Development of Catenary stagger and height Measurement System)

  • 송성근;박성모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.299-304
    • /
    • 2008
  • Catenary and Pantograph are a power supply devices for electric trains and shall be steadily contacted. Rail catenary must be installed precisely and managed for stable train operations. But external factors such as weathers, nature, etc., or aging affect catenary geometry. Changed catenary height causes high voltage spark or instant electric disconnection. Big spark and disconnection damage pantograph shoe and catenary coating and might interrupt rail operations. To prevent a big scale spark or electric disconnection catenary maintenance shall be required with catenary geometry measurement systems. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system reports suspicious overhead line sections with excessive height and stagger variance.

  • PDF