• Title/Summary/Keyword: measure of dynamic isotropy

Search Result 2, Processing Time 0.019 seconds

Task Based Design of a Two-DOF Manipulator with Five-Bar Link Mechanism (5절 링크구조를 갖는 2자유도 매니퓰레이터의 작업지향설계)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • As the demand for the design of modular manipulators or special purpose manipulators has increased, task based design to design an optimal manipulator for a given task become more and more important. However, the complexity with a large number of design parameters, and highly nonlinear and implicit functions are characteristics of a general manipulator design. To achieve the goal of task based design, it is necessary to develop a methodology to solve the complexity. This paper addresses how to determine the kinematic parameters of a two-degrees of freedom manipulator with parallelogram five-bar link mechanism from a given task, namely, how to map a given task into the kinematic parameters. With simplified example of designing a manipulator with five-bar link mechanism, the methodology for task based design is presented. And it introduces formulations of a given task and manipulator specifications, and presents a new dexterity measure for manipulator design. Also the optimization problem with constraints is solved by using a genetic algorithm that provides robust search in complex spaces.

  • PDF

Differential Horizontal Stress Ratio for Danyang Limestone with Vertical Transversely Isotropy (횡적등방성 특성을 갖는 단양 석회암의 수평응력차비 고찰)

  • Jang, Seonghyung;Hwang, Seho;Shin, Jehyun;Kim, Tae Youn
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • To develope shale play which is one of unconventional energy resources, horizontal drilling and hydraulic fracturing are necessary and those are applied to the place where the differential horizontal stress ratio (DHSR) is low. The differential horizontal stress ratio is generally calculated by the minimum and maximum horizontal stress, but it is also calculated from dynamic elastic constants and anisotropic parameters. In this study we analyzed anisotropic properties through the core samples from Danyang limestone and calculated DHSR. The three types of core samples shaped in three directions (vertical, parallel and 45 degree to bedding) were used for laboratory test. We measured P-, S-wave velocities, and density and then calculated dynamic elastic constants, compliance and DHSR. According to the results of the core sample analysis the calculated DHSR is 0.185. Thomsen parameters of the Danyang limestone used in this study are characterized by the P- and S-wave velocities varying along the bedding symmetry axis. It is observed that the DHSR value is more affected by the change in compliance value than the Poisson's ratio. It is necessary to measure SH-wave velocity for more correct petrophysical properties.