• 제목/요약/키워드: measure of an angle

검색결과 483건 처리시간 0.027초

자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발 (Development of body position sensor device for posture correction training)

  • 최정현;박준호;서재용;김수찬
    • 융합신호처리학회논문지
    • /
    • 제21권2호
    • /
    • pp.80-85
    • /
    • 2020
  • 최근 학생 및 사무직 종사자에게서 근골격계 질환의 발병률이 증가하고 있으며, 바른 자세의 유지 및 교정 훈련의 필요성이 요구되고 있으나, 관련 연구는 부족한 현실이다. 기존 연구에서는 의자 방석부분에 멤브레인 센서 또는 압력센서를 배치하여 무게의 편중을 보거나, 사용자를 구속하는 센서를 부착하여 체위 변환을 측정하였다. 본 연구에서는 착용편의성을 고려한 체위 변환 감지 센서 디바이스를 개발하였으며, 측정한 각도를 분석앱을 통해 확인하였다. 앉은 자세에서 체위 변환을 측정하기 위하여 경추 및 척추에 IMU 센서로 구성된 센서 디바이스를 부착한다. 두 개의 센서에서 측정되는 체위의 변화값을 각도로 변환하였으며, 각도값은 실시간으로 분석앱을 통해 보여 진다. 본 연구에서는 체위 변화에 따른 실시간 변화값의 측정 가능성과, 착용편의성, 각도 측정의 경향성을 확인해 보았다. 향후 연구에서는 보다 정밀한 각도의 연산 및 동잡음의 보정을 위한 연구를 진행해야 한다.

보수볼을 이용한 발목 강화 운동이 엄지발가락 가쪽휨증을 가진 20대 성인의 엄지발가락 가쪽휨증 각도와 통증에 미치는 영향 (The Effect of Ankle Strengthening Exercises Using a Bosu® Ball on the Hallux Valgus Angle, Rear Foot Angle, Balance, and Pain of Hallux Valgus Patients in Their 20s)

  • ;정범철;유경태
    • 대한물리의학회지
    • /
    • 제17권3호
    • /
    • pp.69-77
    • /
    • 2022
  • PURPOSE: In this study, we sought to investigate the effect of conservative ankle strengthening exercise programs using a Bosu® ball or taping, on the hallux valgus angle and the pain of hallux valgus patients in their 20s. METHODS: The hallux valgus angle, balance, and pain after measuring the hallux valgus were measured to select suitable subjects. In the ankle strengthening exercise group (ASG) an ankle strengthening exercise program using a Bosu® ball was performed for two sessions weekly for four weeks and the taping group (TG) was given Kinesiotaping® for two sessions weekly, two days per session, for four weeks. Before and after the experiment, a footprint was used to examine the changes in the hallux valgus angle and the visual analog scale (VAS) was used to measure pain. RESULTS: An evaluation of the post-experiment changes in the hallux valgus angle and pain showed statistically significant improvement in both groups. There was no statistically significant improvement between groups. CONCLUSION: These results show that both ankle strengthening exercises and Kinesiotaping® have a positive effect on the hallux valgus angle and pain.

대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향 (The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance)

  • 문일동;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

스트랩다운 탐색기를 탑재한 유도탄의 관측각 제어 유도 (Look-Angle-Control Guidance for Missiles with Strapdown Seeker)

  • 김도완;박우성;유창경
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.275-280
    • /
    • 2013
  • Conventional proportional navigation guidance law is not adequate for missiles with a strapdown seeker, because the strapdown seeker cannot measure line-of-sight rate directly. This paper suggests a guidance loop design method, in which the look angle, measured by the strapdown seeker directly, is controlled to deliver a missile to a target. Basically, the look angle control loop is regarded as an attitude control loop. By using the proposed method, it is possible to shape the midcourse trajectory by choosing the reference look angle properly. The look angle control loop can robustly maintain target lock-on against disturbances because the target is always captured in the field of view of the seeker. The performance of the proposed method is verified via 6-DOF simulations of a true short range tactical missile model.

Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감 (Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control)

  • 이현창;전호익;우광준
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

Development of an Efficient Processor for SIRAL SARIn Mode

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.335-346
    • /
    • 2010
  • Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.

Real-time midcourse guidance with consideration of the impact condition

  • Song, Eun-Jung;Joh, Mi-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.26-36
    • /
    • 2003
  • The objective of this study is to enhance neural-network guidance to consider the impact condition. The optimal impact condition in this study is defined as an head-on attack. Missile impact-angle error, which is a measure of the degree to which the missile is not steering for a head-on attack, can also have an influence on the final miss distance. Therefore midcourse guidance is used to navigate the missile, reducing the deviation angle from head on, given some constraints on the missile g performance. A coordinate transformation is introduced to simplify the three-dimensional guidance law and, consequently, to reduce training data. Computer simulation results show that the neural-network guidance law with the coordinate transformation reduces impact-angle errors effectively.

모바일 로봇을 위한 Ekf이미지 안정화 시스템 개발 (The Development Of An Image Stabilization System Using An Extended Kalman Filter Used In A Mobile Robot)

  • 최윤원;;강태훈;이석규
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.367-376
    • /
    • 2010
  • This Paper Proposes A Robust Image Stabilization System For A Mobile Robot Using An Extended Kalman Filter (Ekf). Though Image Information Is One Of The Most Efficient Data Used For Robot Navigation, It Is Subjected To Noise Which Is The Result Of Internal Vibration As Well As External Factors Such As Uneven Terrain, Stairs, Or Marshy Surfaces. The Camera Vibration Deteriorates The Image Resolution By Destroying The Image Sharpness, Which Seriously Prevents Mobile Robots From Recognizing Their Environment For Navigation. In This Paper, An Inclinometer Was Used To Measure The Vibration Angle Of The Camera System Mounted On The Robot To Obtain A Reliable Image By Compensating For The Angle Of The Camera Vibration. In Addition The Angle Prediction Obtained By Using The Ekf Enhances The Image Response Analysis For Real Time Performance. The Experimental Results Show The Effectiveness Of The Proposed System Used To Compensate For The Blurring Of The Images.

유속 및 각도 측정을 위한 인공 옆줄 센서 개발 (Development of Artificial Lateral Line Sensor for Flow Velocity and Angle Measurements)

  • 김진현
    • 센서학회지
    • /
    • 제30권1호
    • /
    • pp.30-35
    • /
    • 2021
  • To operate an underwater robot in an environment with fluid flow, it is necessary to recognize the speed and direction of the fluid and implement motion control based on these characteristics. Fish have a lateral line that performs this function. In this study, to develop an artificial lateral line sensor that mimics a fish, we developed a method to measure the flow speed and the incident angle of the fluid using a pressure sensor. Several experiments were conducted, and based on the results, the tendency according to the change in the flow speed and the incident angle of the fluid was confirmed. It is believed that additional research can aid in the development of an artificial lateral line sensor.

Reliability and Validity of Measurement Using Smartphone-Based Goniometer of Tibial External Rotation Angle in Standing Knee Flexion

  • Jeon, In-Cheol;Kwon, Oh-Yun;Weon, Jong-Hyuck;Ha, Sung-Min;Kim, Si-Hyun
    • 한국전문물리치료학회지
    • /
    • 제20권2호
    • /
    • pp.60-68
    • /
    • 2013
  • The purpose of this study was to assess the intra-rater test-retest reliability of tibial external rotation angle measurement using a smartphone-based photographic goniometer, DrGoniometer (DrG) compared to a three-dimensional motion analysis system (Vicon). The current study showed an interchangeable method using DrG to measure the tibial external rotation angle in standing knee flexion at $90^{\circ}$. Twelve healthy subjects participated in this study. A rest session was conducted 30 minutes later for within-day reliability and five days later for between-day intra-rater test-retest reliability. To assess the validity of the measurement using DrG, we used a three dimensional motion analysis system as a gold standard to measure the angle of tibial external rotation. Intra-class correlation coefficient (ICC) and the standard error of measurement (SEM) values were used to determine the within- and between- day intra-rater test-retest reliability of using DrG and a three dimensional motion analysis system. To assess validity, Pearson correlation coefficients were used for two measurement techniques. The measurement for tibial external rotation had high intra-rater test-retest reliability of within-day (ICC=.88) and between-day (ICC=.83) reliability using DrG and of within-day (ICC=.93) and between-day (ICC=.77) reliability using a three-dimentional motion analysis system. Tibial external rotation angle measurement using DrG was highly correlated with those of the three-dimensional motion analysis system (r=.86). These results represented that the tibial external rotation angle measurement using DrG showed acceptable reliability and validity compared with the use of three-dimensional motion analysis system.