• Title/Summary/Keyword: mean wind velocity

Search Result 233, Processing Time 0.033 seconds

Modification of Wind Generated Coastal Circulation Model (풍성연안순환모델의 수정)

  • Lee, J. W.;Shin, S. H.;Kim, J. Y.;Yang, S. Y.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.25-38
    • /
    • 1995
  • The wind generated circulation model describes the phenomenon based on the following physical assumptions: a) As the horizontal dimension of the flow domain is several orders of magnitude larger than vertical dimension, nearly horizontal flow is realistic. b) The time taken for circulation to develop may effect on the flow domain of the earth's rotation, the contribution of the Coriolis force. c) A flow domain of large dimension results in quite large Reynolds number and the Reynolds stresses are approximated by the turbulent mean velocity gradient. d) The circulation is forced by the shear stresses on the water surface exercised by the wind. Modification made to the depth average approximation of the convective terms and the bed shear stress terms by adopting a certain distribution of current over the depth and laboratory measurements for the bed shear expression. Modification circulation patterns, energy evolution and surface profile gave the significant differences comparing with the classical model results. The modified model results in higher free surface gradients balancing both the free surface shear and the bed shear and consequently to higher surface profiles along the coast.

  • PDF

Development and Characterization of an Atmospheric Turbulence Simulator Using Two Rotating Phase Plates

  • Joo, Ji Yong;Han, Seok Gi;Lee, Jun Ho;Rhee, Hyug-Gyo;Huh, Joon;Lee, Kihun;Park, Sang Yeong
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.445-452
    • /
    • 2022
  • We developed an adaptive optics test bench using an optical simulator and two rotating phase plates that mimicked the atmospheric turbulence at Bohyunsan Observatory. The observatory was reported to have a Fried parameter with a mean value of 85 mm and standard deviation of 13 mm, often expressed as 85 ± 13 mm. First, we fabricated several phase plates to generate realistic atmospheric-like turbulence. Then, we selected a pair from among the fabricated phase plates to emulate the atmospheric turbulence at the site. The result was 83 ± 11 mm. To address dynamic behavior, we emulated the atmospheric disturbance produced by a wind flow of 8.3 m/s by controlling the rotational speed of the phase plates. Finally, we investigated how closely the atmospheric disturbance simulation emulated reality with an investigation of the measurements on the optical table. The verification confirmed that the simulator showed a Fried parameter of 87 ± 15 mm as designed, but a little slower wind velocity (7.5 ± 2.5 m/s) than expected. This was because of the nonlinear motion of the phase plates. In conclusion, we successfully mimicked the atmospheric disturbance of Bohyunsan Observatory with an error of less than 10% in terms of Fried parameter and wind velocity.

Do Inner Planets Modulate the Space Environment of the Earth?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth's neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets' wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE) spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index) are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth's neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

Computing turbulent far-wake development behind a wind turbine with and without swirl

  • Hu, Yingying;Parameswaran, Siva;Tan, Jiannan;Dharmarathne, Suranga;Marathe, Neha;Chen, Zixi;Grife, Ronald;Swift, Andrew
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.

Statisticall Characteristics of Sea Waves at Mookho (묵호항의 파랑특성)

  • 심명필;안수한
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.101-117
    • /
    • 1977
  • The statatistical characteristics and spectra of sea waves at Mookho were analysed by several statistical methods. As the results, the following conclusions are obtained: 1. Values of surface elevation of sea wave are better fitted to Gram Charlier distribution than Gaussian distribution. This proves that sea waves have not only characters of irregularity but also non-linearity. 2. Distribution of maxima of surface elevation practically follows the distribution of Cartwright and Longuet-Higgins, also spectral width parameter is found to be increased with the increase of root mean square of surface elevation. 3. Sea wave may have spectrum of broad frequency band, however distributions of wave heights and periods follow the Rayleigh distribution which is derived from the assumption of narrow frequency band. 4. Ratios among mean wave heights from observed data show good agreements with theoretical values from Rayleigh distribution. 5. Spectral density and spectral width parameter increase with increase of wind velocity. And wave period at optimum band gas higher value than significant wave period by about 10 percent.

  • PDF

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde (연직바람관측장비와 레윈존데의 비교를 통한 난류 에너지 감소률의 특성 분석)

  • Kang, Woo Kyeong;Moon, Yun Seob;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.448-464
    • /
    • 2016
  • The purpose of this study is to optimize the parameters related to consensus coherency within the PCL 1300, the operating program of wind profiler, from a validation of wind data between rawinsonde and wind profiler at Chupungryeong ($36^{\circ}13^{\prime}$, $127^{\circ}59^{\prime}$) site in Korea. It is then to analyze the diurnal and seasonal characteristics of the turbulence energy dissipation rate (${\varepsilon}$) in clear and rainy days from March 2009 to February 2010. In comparison of the wind data between wind profiler and rawinsonde during April 22-23, 2010, it was shown in a big error more than $10ms^{-1}$ over the height of 3,000 meters in the zonal (u) and meridional (v) wind components. When removing more than $10ms^{-1}$ in each wind speed difference of u an v components between the two instruments, the correlation coefficients of these wind components were 0.92 and 0.88, respectively, and the root mean square errors were 3.07 and $1.06ms^{-1}$. Based on these results, when the data processing time and the minimum available data within the PCL 1300 program were adjusted as 30 minutes and 60%, respectively, the bias errors were small. In addition, as a result of an analysis of sensitivity to consensus coherency of u and v components within the PCL1300 program, u components were underestimated in radial coherency, instantaneous and winbarbs coherency, whereas v components were overestimated. Finally by optimizing parameters of the PCL1300 program, the diurnal and seasonal means of ${\varepsilon}$ at each height were higher in rainy days than those in clear days because of increasing in the vertical wind speed due to upward and downward motions. The mean ${\varepsilon}$ for clear and rainy days in winter was lower than those of other seasons, due to stronger horizontal wind speed in winter than those in other seasons. Consequently, when the turbulence energy dissipation rates in the vertical wind speed of more than ${\pm}10cm\;s^{-1}$ were excluded for clear and rainy days, the mean ${\varepsilon}$ in rainy days was 6-7 times higher than that in clear days, but when considering them, it was 4-5 times higher.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki;Yamaguchi, Takashi;Sato, Haruna;Watanabe, Yoko;Noguchi, Izumi;Hara, Hiroshi;Nagai, Haruyasu
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.