• 제목/요약/키워드: mean turbulent kinetic energy

검색결과 124건 처리시간 0.024초

4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구 (A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine)

  • 김철수;최영돈
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Experimental Study of Flow Fields around a Perforated Breakwater

  • Ariyarathne, H.A. Kusalika S.;Chang, Kuang-An;Lee, Jong-In;Ryu, Yong-Uk
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 2012
  • This study investigates flow fields and energy dissipation due to regular wave interaction with a perforated vertical breakwater, through velocity data measurement in a two-dimensional wave tank. As the waves propagate through the perforated breakwater, the incoming wave energy is reflected back to the ocean, dissipated due to very turbulent flows near the perforations and inside the chamber, and transmitted through the perforations of the breakwater. This transmitted energy is further reduced due to the presence of the perforated back wall. Hence most of the energy is either reflected or dissipated in the vicinity of the structure, and only a small amount of the incoming wave energy is transmitted through the structure. In this study, particle image velocimetry (PIV) technique was employed to measure two-dimensional instantaneous velocity fields in the vicinity of the structure. Measured velocity data was treated statistically, and used to calculate mean flow fields, turbulence intensity and turbulent kinetic energy. For investigation of the flow pattern, time-averaged mean velocity fields were examined, and discussed using the cross-sections through slot and wall for comparison. Flow fields were obtained and compared for various cases with different regular wave conditions. In addition, turbulent kinetic energy was estimated as an approach to understand energy dissipation near the perforated breakwater. The turbulent kinetic energy was distributed against wave height and wave period to see the dependence on wave conditions.

영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.

분사류의 중심선 유동특성에 관한 실험적 연구 (Experimental Study on the Centerline Flow Characteristics of Jets)

  • 김동식
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.387-393
    • /
    • 2001
  • The flow characteristics on the centerline in case of free jet, sudden expansion jet and impinging jet have been investigated. Centerline flow behaviors and similaritis with mean velocities, turbulent intensities, shear stresses, isotropic structures and turbulent kinetic energies on the streamwise direction were looked into and compared with three jets, The results show that mean velocities have represented potential core and decayed with similar gradients. The turbulent intensities and shear stresses were presented peak values in the self-preserving region, and then they were in decay. Aeolotropy in the initial region were possible returned to isotropy patterns with asymptotic approach in the downstream region. It has been found that the turbulent kinetic energies for the three cases of jet existed in the similarity and they coincided with Gaussian profile.

  • PDF

온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측 (Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir)

  • 박상우;정명균
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.

SUBOFF 모형 후방 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

$45^{\circ}$ 원형충돌분류의 난류혼합유동장에 대한 수치해석 (Numerical Analysis on the Turbulent Mixing Flow Field of $45^{\circ}$ Impinging Round Jet)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.38-45
    • /
    • 2011
  • The computational flow numerical analysis was introduced to predict thc turbulent characteristics in the mixing flow structure of $45^{\circ}$ impinging round jet. This analysis has been carried out through the commercial fluent software. Realizable(RLZ) k-${\varepsilon}$ was used as a turbulent model. It can be known that mean velocities analysed through RLZ k-${\varepsilon}$ turbulent model comparatively predict well the experiments and show well the elliptic shape of mixing flow structure in the Y-Z plane, but analysed turbulent kinetic energies show somewhat differently from the experiments in certain regions.

상류유동전개부, 수축부 및 자유분사류로 이어지는 유동장에서의 난류에너지 천이에 대한 연구 (Transition of Turbulent Kinetic Energy Through a Serial Unit of Straight-Duct, Contraction and Free-Jet)

  • 한용운;남경덕
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2368-2375
    • /
    • 1992
  • 본 연구에서는 축대칭 유동장치를 구성하여 열선 풍속계를 이용, 중심축에 따 른 난류쇠퇴양식을 살펴보고 동시에 난류에너지천이에 대한 세밀한 분석을 통하여 각 각 상류유동전개부, 수축부 및 자유분사류로 연속되는 3개의 유동 구조속에서 어떻게 천이해 갈 것인가를 측정하여 축대칭 유동의 난류구조 변천에 대한 기초 실험자료로 제시하고저 한다.