• Title/Summary/Keyword: mean time delay

Search Result 324, Processing Time 0.022 seconds

Mean time delay variation performane of DTTL bit synchronizer (DTTL 비트동기장치의 평균시간지연 편차 성능에 관한 연구)

  • 김관옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2401-2408
    • /
    • 1997
  • The measured pulse shapes provided in the given data package demonstrated pulse distortions due to laser speckle. the distorted pulse shapes were carefully analyzed, modeled, and then applied to the DTTL(Digital-data Transition Tracking Loop)[1] bit synchronizer simulator to measure the mean time delay and its delay variation performance. The result showed that the maximum mean time delay variation with the modeled data was 12.5% when window size equals 1. All the data given were located within this modeled boundary and the maximum eman time delay variation was 7% in this case. The mean time delay variation was known to be smaller by reducing the window size [2][5][6]. The mitigated delay variation was 2.5% in the modeled case and 1.4% in the data set given when the windown size equals 0.1. With the digital DTTL insteal of analog DTTL, similar results was obtained.

  • PDF

Improved Delay-Locked Loop in a UWB Impulse Radio Time-Hopping Spread-Spectrum System

  • Zhang, Weihua;Shen, Hanbing;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.716-724
    • /
    • 2007
  • As ultra-wideband impulse radio (UWB-IR) uses short-duration impulse signals of nanoseconds, even a small number of timing errors can cause a detrimental effect on system performance. A delay-locked loop (DLL) is proposed to synchronize and reduce timing errors. The design of the DLL is vital for UWB systems. In this paper, an improved DLL is introduced to a UWB-IR time-hopping spread-spectrum system. Instead of using only two central correlator branches as in a conventional DLL, the proposed system uses two additional correlator branches with different delay parameters and different weight parameters. The performance of the proposed schemes with the optimal parameters is compared with that of traditional schemes through simulation: the proposed four-branch DLLs achieves less tracking jitter or a longer mean time to lose lock (MTLL) than the conventional two-branch DLLs if proper parameters are chosen.

  • PDF

Delay Analysis of a Message based on the Stop-and-Wait ARQ in a Time- Varying Radio Link (시변 패킷 기반 무선 링크에서 정지-대기 ARQ 기반 메시지의 지연 시간 분석)

  • 정명순;박홍성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.684-693
    • /
    • 2003
  • This paper analyzes transmissiondelays of a message and a packet in a time-varying and packet-based radio link. The paper assumes that thearrivals of messages have a Bernoulli process and the lengths of the messages a exponential distribution. To reflect the feature of the time-varying radio link, we use a two-state Markov model. From the model the mean transmission delay of and the mean queue length of the packet are analyzed in terms of the packet distribution function, the packet transmission service time, and the PER of the radio link. And the mean message transmission delay time and the mean queue length are derived using the performance indices of the packet. Numerical results show that the message arrival rate and the message length have some bounds to keep the transmission of the message steady and to improve the performance indices of the message. It can be known that the PER of the state influences on the performance indices more than the sojourn time of the state.

On the long-term stability of the Y4KCam shutter

  • Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.82.1-82.1
    • /
    • 2015
  • We investigate the long-term spatial drift of the center and the temporal variation of the shutter delay time map of Y4KCam mounted on the CTIO 1.0m telescope. We have collected shutter delay time maps for over 7 years as a part of long-term survey program. We find that the center of the shutter delay time map can drift up to $450{\mu}m$ on the CCD. This effect can result in a small amount of error unless the proper shutter delay time correction, but it does not appear to cause any significant problems in photometric measurements. We obtain the mean value of the shutter delay time of $69.1{\pm}0.9$ msec and find no temporal variation of the shutter delay time of Y4KCam for over 7 years, indicative of the mechanical stability of the shutter. We suggest that using a master shutter delay time correction frame would be sufficient to achieve high precision photometry and this does not add up errors more than ~ 2.5 mmag across the CCD frame with exposure times longer than 1 sec.

  • PDF

Passive-based Bilateral Controller Design under Varying Time Delay

  • Gu, Ying;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.97-99
    • /
    • 2009
  • Bilateral teleoperation systems, connected to computer networks such as Internet have to deal with the time delay varying depending on factors such as congestion, bandwidth or distance. And the entire system is easy to become unstable due to irregular time delay. Passivity concept has been using as a framework to solve the stability problem in bilateral control of teleoperation. Acontrol scheme for teleoperation systems with varying time delay is proposed based on a passivity concept is proposed in this paper. One approach makinguse of the characteristic impedances is proposed to achieve a passive control. Since passive control does not mean that the system performance will be acceptable, another transmission scheme which focuses on both the passive feature and the acceptable performance is configured for varying time delay in this paper. The tracking performance has been proved through the computer simulation for varying time delay bilateral teleoperation system using Matlab Simulink.

  • PDF

Performance Analysis of NTT/BT Protocol (NTT/BT 프로토콜의 성능 분석)

  • 이창훈;백상엽;이동주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.99-123
    • /
    • 1997
  • Performance analysis of NTT/BT protocol is investigated, which is a GFC (Generic Flow Control) ptotocol in ATM (Asynchronous Transfer Mode ) network and is based on cyclic reset mechanism. THe mean cell delay time is proposed as a performance measure of NTT/BT protocol. The mean cell delay time is defined as the duration from the instant the cell arrives at the transmission buffer until the cell is fully transmitted. The process of cell transmission can be described as a single server queueing modle with two dependent services. By utilizing this model, mean cell delay time is obtained and sensitivity of the factors such as window size and reset period is also analysed.

  • PDF

Statistical Analysis of Delay Times for Remote Control Applications

  • Du Baisong;Hwa Sop ROH;Jeong-Bin YIM
    • Journal of Navigation and Port Research
    • /
    • v.48 no.5
    • /
    • pp.418-423
    • /
    • 2024
  • Time delay in the remote control of maritime autonomous surface ships (RC-MASS) is a critical factor and a significant area of research. However, current studies are fragmented and lack a cohesive understanding of these delays. This study aims to review and analyze relevant literature on time delays, including policy documents, technical reports, and research papers, to provide valuable insights into RC-MASS operations. Through a systematic search, sources from the past 25 years were examined, and time delay data were extracted and categorized for statistical analysis. The findings indicate an average delay of 56.17 seconds across all categories, with considerable variability. Delays associated with navigation equipment, ship maneuvering, and ship control are prevalent across all vessels, exhibiting large values and wide variability. Although communication delays had a smaller average, they warrant further investigation due to their critical role in RC-MASS operations. This research sheds light on time delay patterns in RC-MASS, helping to identify key areas for improvement and supporting future technological advancements.

Performance Analysis of the DQDB Protocol (DQDB (Distributed Queue Dual Bus) 프로토콜의 성능분석)

  • 이창훈;박광만;홍정완
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.1-14
    • /
    • 1994
  • In this paper, an analytical model of the message delay in the DQDB (Distributed Queue Dual Bus) network is investigated. The DQDB network has been adopted as a subnetwork for the IEEE 802 MAN (Metropolitan Area Network) standard. The DQDB network consists of two high speed undirectional buses and a series of stations attached to both of the buses. Massages arriving at each station consists of severla packets according to its size. This system is approximated into " $B^{[x]}$/G/1 with exceptional first service queueing " by defining the concept of service time on a packet. The service time for a packet is defined as the time from the instant the packet arrives at the transmission buffer until the time the packet is fully transmitted. By using the BASTA property and the average work in the system, the mean message delay time is obtained.age work in the system, the mean message delay time is obtained.d.

  • PDF

Real-time Fluorescence Lifetime Imaging Microscopy Implementation by Analog Mean-Delay Method through Parallel Data Processing

  • Kim, Jayul;Ryu, Jiheun;Gweon, Daegab
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Fluorescence lifetime imaging microscopy (FLIM) has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. Although analog mean-delay (AMD) method was introduced to enhance the imaging speed of commonly used FLIM based on time-correlated single photon counting (TCSPC), a real-time image reconstruction using AMD method has not been implemented due to its data processing obstacles. In this paper, we introduce a real-time image restoration of AMD-FLIM through fast parallel data processing by using Threading Building Blocks (TBB; Intel) and octa-core processor (i7-5960x; Intel). Frame rate of 3.8 frames per second was achieved in $1,024{\times}1,024$ resolution with over 4 million lifetime determinations per second and measurement error within 10%. This image acquisition speed is 184 times faster than that of single-channel TCSPC and 9.2 times faster than that of 8-channel TCSPC (state-of-art photon counting rate of 80 million counts per second) with the same lifetime accuracy of 10% and the same pixel resolution.

LONG-TERM VARIATION OF THE SHUTTER DELAY TIME OF Y4KCAM OF THE CTIO 1.0 M TELESCOPE

  • Lee, Jae-Woo;Pogge, Richard
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.289-293
    • /
    • 2016
  • We investigate the long-term spatial drift of the center and the temporal variation of the shutter delay time map of Y4KCam mounted on the CTIO 1.0 m telescope. We have collected shutter delay time maps over eight years as a part of our long-term survey program. We find that the center of the shutter delay time map can drift up to $450{\mu}m$, equivalent to ${\approx}30pixels$, on the CCD. This effect can result in a small amount of error in integration time without the proper shutter delay time correction, but it does not appear to cause any significant problems in photometric measurements. We obtain a mean shutter delay time of $69.1{\pm}0.8$ ms and find no temporal variation of the shutter delay time of Y4KCam over eight years, indicative of the mechanical stability of the shutter. We suggest that using a master shutter delay time correction frame would be sufficient to achieve high precision photometry, which does not exceed photometric errors ${\approx}1.7mmag$ across the CCD frame for exposure times longer than 1 s.