• Title/Summary/Keyword: mean squared error (MSE)

Search Result 174, Processing Time 0.034 seconds

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

Adaptive Equalization using PDP Matching Algorithms for Underwater Communication Channels with Impulsive Noise (충격성 잡음이 있는 수중 통신 채널의 적응 등화를 위한 확률밀도함수 정합 알고리듬)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1210-1215
    • /
    • 2011
  • In this paper, a supervised adaptive equalization algorithm based on probability density function (PDF) matching method is introduced and its decision-feedback version is proposed for underwater communication channels with strong impulsive noise and severe multipath characteristics. The conventional least mean square (LMS) algorithm based on mean squared error (MSE) criterion has shown to be incapable of coping with impulsive noise and multipath effects commonly shown in underwater communications. The linear PDF matching algorithm, which shows immunity to impulsive noise, however, has revealed to yield unsatisfying performance under severe multipath environments with impulsive noise. On the other hand, the proposed nonlinear PDF matching algorithm with decision feedback proves in the simulation to possess superior robustness against impulsive noise and multipath characteristics of underwater communication channels.

Study for Relationship between Compressional Wave Velocity and Porosity based on Error Norm Method (중요도 분석 기법을 활용한 압축파 속도와 간극률 관계 연구)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.127-135
    • /
    • 2024
  • The purpose of this paper is to establish the relationship between compression wave velocity and porosity in unsaturated soil using a deep neural network (DNN) algorithm. Input parameters were examined using the error norm method to assess their impact on porosity. Compression wave velocity was conclusively found to have the most significant influence on porosity estimation. These parameters were derived through both field and laboratory experiments using a total of 266 numerical data points. The application of the DNN was evaluated by calculating the mean squared error loss for each iteration, which converged to nearly zero in the initial stages. The predicted porosity was analyzed by splitting the data into training and validation sets. Compared with actual data, the coefficients of determination were exceptionally high at 0.97 and 0.98, respectively. This study introduces a methodology for predicting dependent variables through error norm analysis by disregarding fewer sensitive factors and focusing on those with greater influence.

Design-Based Properties of Least Square Estimators of Panel Regression Coefficients Based on Complex Panel Data (복합패널 데이터에 기초한 최소제곱 패널회귀추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.515-525
    • /
    • 2010
  • We investigated design-based properties of the ordinary least square estimator(OLSE) and the weighted least square estimator(WLSE) in a panel regression model. Given a complex data we derive the magnitude of the design-based bias of two estimators and show that the bias of WLSE is smaller than that of OLSE. We also conducted a simulation study using Korean welfare panel data in order to compare design-based properties of two estimators numerically. In the study we found the followings. First, the relative bias of OLSE is nearly two times larger than that of WLSE and the bias ratio of OLSE is greater than that of WLSE. Also the relative bias of OLSE remains steady but that of WLSE becomes smaller as the sample size increases. Next, both the variance and mean square error(MSE) of two estimators decrease when the sample size increases. Also there is a tendency that the proportion of squared bias in MSE of OLSE increases as the sample size increase, but that of WLSE decreases. Finally, the variance of OLSE is smaller than that of WLSE in almost all cases and the MSE of OLSE is smaller in many cases. However, the number of cases of larger MSE of OLSE increases when the sample size increases.

Estimating Failure Rate Using Warranty Claim Data with Delayed Report of Customers (고객의 지연보고를 고려한 보증수리내역자료에서의 고장률 추정)

  • Park, J.H.;Kim, Y.H.;Baek, J.H.;Lie, C.H.
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.176-181
    • /
    • 2010
  • Warranty claim data analysis is a useful tool for the manufacturer because it contains many useful informations regarding reliability of the product in the real-world environments. Because of the nature of uncertainty and the incompleteness of data, some bias patterns are observed on warranty claim rate known as 'spikes'. Two types of spikes are considered. One is due to manufacturing-related failures. The other is caused by customer's behavior. This paper proposes a model by considering two types of spikes. Warranty claim data is analyzed with the proposed model. To represent spikes observed on the early warranty period, we classify failures into manufacturing-related failures and usage-related failures. Uniform distribution is assumed for the time delayed to diagnose and report by customers. By reducing maximum value of the delayed time by customers, the proposed model characterizes customer's rush in the vicinity of the warranty expiration limit. Experimental results by using the real warranty claim data show that the proposed model is better than the existing one in respect to MSE(Mean Squared Error). Moreover it is expected to estimate the failure rate more realistically with proposed model because it considers the delayed time to diagnose and report by customers.

A Study on Optimal Polynomial Neural Network for Nonlinear Process (비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구)

  • Kim, Wan-Su;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

A comparative analysis of the Demand Forecasting Models : A case study (수요예측 모형의 비교분석에 관한 사례연구)

  • Jung, Sang-Yoon;Hwang, Gye-Yeon;Kim, Yong-Jin;Kim, Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.31
    • /
    • pp.1-10
    • /
    • 1994
  • The purpose of this study is to search for the most effective forecasting model for condenser with independent demand among the quantitative methods such as Brown's exponential smoothing method, Box-Jenkins method, and multiple regression analysis method. The criterion for the comparison of the above models is mean squared error(MSE). The fitting results of these three methods are as follows. 1) Brown's exponential smoothing method is the simplest one, which means the method is easy to understand compared to others. But the precision is inferior to other ones. 2) Box-Jenkins method requires much historic data and takes time to get to the final model, although the precision is superior to that of Brown's exponential smoothing method. 3) Regression method explains the correlation between parts with similiar demand pattern, and the precision is the best out of three methods. Therefore, it is suggested that the multiple regression method is fairly good in precision for forecasting our item and that the method is easily applicable to practice.

  • PDF

Regression Trees with. Unbiased Variable Selection (변수선택 편향이 없는 회귀나무를 만들기 위한 알고리즘)

  • 김진흠;김민호
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.459-473
    • /
    • 2004
  • It has well known that an exhaustive search algorithm suggested by Breiman et. a1.(1984) has a trend to select the variable having relatively many possible splits as an splitting rule. We propose an algorithm to overcome this variable selection bias problem and then construct unbiased regression trees based on the algorithm. The proposed algorithm runs two steps of selecting a split variable and determining a split rule for binary split based on the split variable. Simulation studies were performed to compare the proposed algorithm with Breiman et a1.(1984)'s CART(Classification and Regression Tree) in terms of degree of variable selection bias, variable selection power, and MSE(Mean Squared Error). Also, we illustrate the proposed algorithm with real data sets.

L-Estimation for the Parameter of the AR(l) Model (AR(1) 모형의 모수에 대한 L-추정법)

  • Han Sang Moon;Jung Byoung Cheal
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 2005
  • In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows' weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.