• Title/Summary/Keyword: maximum-minimum theorem

Search Result 18, Processing Time 0.087 seconds

Algorithm of an automated auditory brainstem response neonatal hearing screening method (신생아를 대상으로한 청성뇌간유발반응의 자동 판독 알고리즘)

  • Jung, Won-Hyuk;Hong, Hyun-Ki;Kim, Sung-Woo;Kim, Jin-Tae;Park, Joong-Hoon;Kim, Deok-Won
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.825-826
    • /
    • 2006
  • In this paper, we propose an algorithm that applies Rolle's theorem to automatically detect and label peak III and V of the normal, suprathreshold auditory brainstem response (ABR). ABR waveform were recorded from 55 normal-hearing ears at screening levels varying from 30 to 60 dBnHL. For each ABR waveform, the peak-finding algorithm proceeded in fourth steps: (1) Select maximum and minimum values of the target ABR waveform, (2) divide this range into n equal parts, (3) effective candidate peaks in the ABR waveform are identified using Rolle's theorem (4) peak III and V are identified from these candidate peaks based on their latency and morphology. As a result, proposed auto dectection method showed high correlation and accuracy with manual detection method performed by clinician. By using proposed algorithm, clinician can detect and label peak III and V faster and more efficient than manual detection method.

  • PDF

A Basic Method for Composite Power System Expansion Planning under Security Criteria (안전도 제약을 고려한 복합전력계통의 확충계획에 관한 기초연구)

  • Kwon, Jung-Ji;Tran, TrungTinh;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.557-559
    • /
    • 2005
  • This paper proposes a method for choosing the best composite power system expansion plan considering a contingency security criterion. The proposed method minimizes the investment budget fer constructing new transmission lines subject to contingency criterion. it models the power system expansion problem as an integer programming one. The method solves for the optimal strategy using a branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Although the proposed method is applied to a simple sample study, the test results demonstrate that the proposed method is suitable for solving the power system expansion-planning problem subject to practical future uncertainties.

  • PDF

A Study on Transmission System Expansion Planning on the Side of Highest Satisfaction Level of Decision Maker

  • Tran TrungTinh;Kang Sung-Rok;Choi Jae-Seok;Billinton Roy;El-keib A. A.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.46-55
    • /
    • 2005
  • This paper proposes a new method for choice of the best transmission system expansion plan on the side of highest satisfaction level of decision maker using fuzzy integer programming. The proposed method considers the permissibility and ambiguity of the investment budget (economics) for constructing the new transmission lines and the delivery marginal rate (reliability criteria) of the system by modeling the transmission expansion problem as a fuzzy integer programming one. It solves the optimal strategy (reasonable as well as flexible) using a fuzzy set theory-based on branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Under no or only a very small database for the evaluation of reliability indices, the proposed technique provides the decision maker with a valuable and practical tool to solve the transmission expansion problem considering problem uncertainties. Test results on the 63-bus test system show that the proposed method is practical and efficiently applicable to transmission expansion planning.

Transmission System Expansion Planning by Nodal Delivery Marginal Rate Criterion -II (모선수송전달능력(母線輸送傳達能力) 신뢰도 기준에 의한 송전계통(送電系統)의 광역설계(擴充計劃) -II)

  • Park, Jeong-Je;Shi, Bo;Jeong, Sang-Hun;Choi, Jae-Seok;Mount, Timothy;Thomas, Robert
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.574-575
    • /
    • 2007
  • This paper proposes a method for choosing the best transmission system expansion plan using nodal/bus delivery marginal rate criterion ($BMR_k$) defined newly in this paper. The objective method minimizes a total cost which is an investment budget for constructing new transmission lines subject to the $BMR_k$ which means a nodal deterministic reliability level requirement at specified load point. The proposed method models the transmission system expansion problem as an integer programming problem. It solves for the optimal strategy using a branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Test results on an existing 21-bus system are included in the paper. It demonstrated the suitability of the proposed method for solving the transmission system expansion planning problem in competitive electricity market environment.

  • PDF

A Basic Study on Composite Power System Expansion Planning Considering Probabilistic Reliability Criteria

  • Choi, Jae-Seok;Tinh, TranTrung;Kim, Hyung-Chul;El-Keib, A.;Thomas, R.;Billinton, R.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.297-300
    • /
    • 2004
  • This paper proposes a method for choosing the best composite power system expansion plan considering probabilistic reliability criterion. The proposed method was modeled as the minimization of the investment budget (economics) for constructing new transmission lines subject to not only deterministic(demand constraint) but also probabilistic reliability criterion(LOLE) with considering the uncertainties of the system elements. This is achieved by modeling the power system expansion problem as an integer programming one. The method solves for the optimal strategy using a probabilistic theory based branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Although the proposed method is applied to a simple sample study, the test results demonstrate a fact that the proposed method is suitable for solving the power system expansion planning problem subject to practical uncertainties for future.

  • PDF

The Four Color Algorithm (4-색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes an algorithm that proves an NP-complete 4-color theorem by employing a linear time complexity where $O(n)$. The proposed algorithm accurately halves the vertex set V of the graph $G=(V_1,E_1)$ into the Maximum Independent Set (MIS) $\bar{C_1}$ and the Minimum Vertex Cover Set $C_1$. It then assigns the first color to $\bar{C_1}$ and the second to $\bar{C_2}$, which, along with $C_2$, is halved from the connected graph $G=(V_2,E_2)$, a reduced set of the remaining vertices. Subsequently, the third color is assigned to $\bar{C_3}$, which, along with $C_3$, is halved from the connected graph $G=(V_3,E_3)$, a further reduced set of the remaining vertices. Lastly, denoting $C_3$ as $\bar{C_4}$, the algorithm assigns the forth color to $\bar{C_4}$. The algorithm has successfully obtained the chromatic number ${\chi}(G)=4$ with 100% probability, when applied to two actual map and two planar graphs. The proposed "four color algorithm", therefore, could be employed as a general algorithm to determine four-color for planar graphs.

Methodology to estimate minimum required separation distance between vehicle and bicycle when overtaking (자동차와 자전거 간 추월 최소요구 이격거리 추정 방법론 연구)

  • Jeon, Woo Hoon;Lee, Young-Ihn;Yang, Inchul;Lee, Hyang Mi
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.191-199
    • /
    • 2017
  • PURPOSES : The objective of this study is to develop a methodology to estimate the minimum required separation distance (MRSD) between a vehicle and a bicycle when overtaking. METHODS : Three steps have been conducted to develop a methodology to estimate MSRD. First, a literature review has been conducted on the measurement of MSRD, and how it may be applied in Korea. Second, two assumptions have been made to develop a methodology to estimate the MSRD. The first assumption is that the maximum separation distance between a vehicle and a bicycle can be observed when they are at the same location longitudinally. In addition, it is assumed that the separation distance is invalid when the contra-flow exists. Finally, three cameras were installed at a height of 10 m to record the vehicle-bicycle interaction. Moreover, the vehicle trajectories as well as the separation distance were coded and analyzed. Through the hypothesis test and the interval estimation, the sample mean was tested and the confidence interval was estimated. RESULTS : 141 records of separation distance data were collected, and the hypothesis test demonstrated that the MSRD in Korea is significantly higher than other countries. In addition, the confidence interval of the population mean of MSRD is from 1.51 m to 1.65 m with 95% level of confidence. CONCLUSIONS : It is expected that the proposed methodology to estimate MSRD would be beneficial in studying road safety of vehicles and bicycles. Also, the proposed MSRD is expected to be designated in the act of road and transportation.

Exploring a Hypothetical Learning Trajectory of Linear Programming by the Didactical Analysis (선형계획법의 교수학적 분석을 통한 가설 학습 경로 탐색)

  • Choi, Ji-Sun;Lee, Kyeong-Hwa;Kim, Suh-Ryung
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.85-102
    • /
    • 2010
  • Linear programming(LP) is useful for finding the best way in a given condition for some list of requirements represented as linear equations. This study analysed LP in mathematics contexts and LP in school mathematics contexts, considered learning process of LP from an epistemological point of view, and explored a hypothetical learning trajectory of LP. The differences between mathematics contexts and school mathematics contexts are whether they considered that the convex polytope $\Omega$ is feasible/infeasible or bounded/unbounded or not, and whether they prove the theorem that the optimum is always attained at a vertex of the polyhedronor not. And there is a possibility that students could not understand what is maximum and minimum of a linear function when the domain of the function is limited. By considering these three aspects, we constructed hypothetical learning trajectory consisted of 4 steps. The first step is to see a given linear expression as linear function, the second step is to partition a given domain by straight lines, the third step is to construct the conception of y-intercept by relating lines and the range of k, and the forth step is to identify whether there exists the optimum in a given domain or not.

  • PDF