• Title/Summary/Keyword: maximum wind speeds

Search Result 105, Processing Time 0.052 seconds

A Study on the Application ratio of Directional wind speeds Characteristics by Gumbel Model Simulation Using Directional wind Patterns (풍향패턴에 따른 굼벨 모델 시뮬레이션에 의한 풍향풍속성의 적용율 평가에 관한 연구)

  • Chung, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.573-580
    • /
    • 2010
  • In this study, an assessment method that considers the effects of directional wind speeds on buildings or structures that are sensitive to wind is proposed. Also, the basic characteristics of directional wind speeds were assessed by means of local annual maximum wind speeds. From the method of assessment of the characteristics of directional wind speeds, their goodness-of-fit was verified by applying extreme value distribution to the data on annual maximum wind speeds from the Korea Meteorological Administration. To consider the characteristics of directional winds, an assessment method is suggested that divides the directional wind pattern of each directional wind speed into four groups. From the study results, all the data on directional wind speeds based on the Gumbel distribution were examined using data on annual maximum wind speeds from Seoul, Tongyung, and Incheon. Since the Gumbel model of all directional wind speeds has independent probability characteristics that govern the 4 directional wind pattern groups, the application ratio proposed was based on the assessment of these four groups. According to the goodness-of-fit of the data on the annual maximum wind speeds based on the Gumbel distribution, new application ratios were proposed that consider the directional wind speeds in Seoul, Tongyung, and Incheon.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

Probability-Based Estimates of Basic Design Wind Speeds In Korea (확률에 기초한 한국의 기본 설계풍속 주정)

  • 조효남;백현식;차철준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.7-12
    • /
    • 1988
  • This study presents rational methods for probability-based estimates of basic design wind speeds in Korea and develops a risk-bases nation-wide map of design wind speeds. The paper examines the fitting of the Type-I extreme model to maximum yearly non-typhoon wind data from long-term records based on the conventional method and to maximum monthly nod-typhoon wind data from short-term records following Grigorin's approach. The paper also reviews the applicability of the method using short records of about 5 years. The basic design wind speeds for typhoon and non-typhoon wind at a station are made to be obtained from a mixed model which is given as a product of typhoon and non-typhoon extreme wind distributions. A practical method which is based on the fitting of the Type I model to records or typhoon and non-typhoon mixed wind data at a station is also preposed in this study.

  • PDF

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan

  • Tomokiyo, Eriko;Maeda, Junji;Ishida, Nobuyuki;Imamura, Yoshito
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.345-357
    • /
    • 2004
  • In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.

Wind Tunnel Test of Aerodynamic Forces and Wind Pressures Acting on Muilti-layer Radom in Active Phased Array Radar (풍동실험을 통한 능동위상배열레이더에서 다층레이돔에 작용하는 공기력과 풍압의 실험적 연구)

  • Yim, Sung-Hwan;Kang, Kwang-Hee;Choi, Ji-Ho;Lee, Seung-Ho;Kwon, Soon-Duck
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.149-157
    • /
    • 2014
  • In this paper, we investigated the sensitivity of aerostatic force coefficients of multi-layer radom in the various wind speeds. The test was conducted in KOCED Wind Tunnel Center in Chonbuk National University, and wind speeds were in the range from 5 m/s to 26 m/s in order to determine the Reynolds number independence. The test results of present multi-layer radom were not affected by the Reynolds number, The maximum positive pressure coefficient was found to be 1.08 at the center of the front of the plane in angle of attack of 0 degree, the maximum negative pressure coefficient was -2.03 at the upper right corner in angle of attack of 120 degree, while maximum drag coefficient was 1.11 in angle of attack of 180 degree.

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

Stress Analysis on a Structure of Solar Tracker Subjected to Wind Load (풍하중을 받는 태양광 추적 구조물의 응력해석)

  • Kim, Yong-Woo;Kim, Won-Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.747-754
    • /
    • 2012
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as snow weight and wind loading. The solar tracker structure should be designed to have sufficient stiffness and strength against such loads. In this paper, simulations are performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate the effects of extreme wind on solar tracker. As the effects of wind load, maximum displacement and maximum equivalent stress in the solar tracker are calculated. Finite element stress analysis is carried out by using the pressure distribution that is obtained by prior wind load analysis due to the flow around the solar tracker. The stress analysis of solar tracker to check and/or improve structural robustness provides some useful instructions for structural design or revision of solar tracker.

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.