• Title/Summary/Keyword: maximum wind speed

Search Result 590, Processing Time 0.03 seconds

Optimal Design of a Direct-Driven PM Wind Generator Aimed at Maximum AEP using Coupled FEA and Parallel Computing GA

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Hahn, Sung-Chin;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.552-558
    • /
    • 2008
  • Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.

Effect of Blockage Ratio on Wind Tunnel Testing of Small Vertical-Axis Wind Turbines (소형 수직축 풍력발전기 풍동실험시 폐쇄율의 영향)

  • Jeong, Houi-Gab;Lee, Seung-Ho;Kwon, Soon-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of blockage ratio on wind tunnel testing of small vertical-axis wind turbine has been investigated in this study. Height and rotor diameter of the three blades Darrieus vertical axis wind turbine used in present test were 0.4m and 0.35m respectively. We measured the wind speeds and power coefficient at three different wind tunnels where blockage ratio were 3.5%, 13.4% and 24.7% respectively. The test results show that the measured powers have been strongly influenced by blockage ratio, generally increased as the blockage ratio increases. The maximum power at higher blockage ratio has been obtained at relatively high tip speed ratio compared with that at low blockage ratio. The measured power coefficients under high blockage ratio can be improved from proper correction using the simple correction equation based on blockage factor. In present study, the correction error for power coefficient can be less than 5%, however correction effectiveness reveals relatively poor at high blockage ratio and low wind speed.

A Study on the Effect of Wind Force and Moment Acting on T/S HANNARA (실습선 한나라호에 작용하는 풍압력 및 풍압모우멘트 영향에 관한 연구)

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.223-228
    • /
    • 2007
  • In recent trends of the enlargement and specialization, container ship, LNCG, PCC and passenger ship which have relatively large hull and superstructure above the water line, are already being operated in the world It is very important information for the safety operation of these vessels to estimate the ship's performance under the specific wind condition while berthing, unberthing or low-speed sailing. In this paper, the effect of wind force and moment acting on the training ship HANNARA is investigated by using the numerical calculations. The results of drift angle and counter rudder angle with the relative wind direction and force, the critical wind velocity with the ratio of wind velocity and ship's speed and maximum heeling angle with the wind velocity are shown The presented results can be applied directly to T/S HANNARA in berthing maneuver and avoiding typhoons, and utilized as an educational materials.

New approach to calculate Weibull parameters and comparison of wind potential of five cities of Pakistan

  • Ahmed Ali Rajput;Muhammad Daniyal;Muhammad Mustaqeem Zahid;Hasan Nafees;Misha Shafi;Zaheer Uddin
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.95-110
    • /
    • 2022
  • Wind energy can be utilized for the generation of electricity, due to significant wind potential at different parts of the world, some countries have already been generating of electricity through wind. Pakistan is still well behind and has not yet made any appreciable effort for the same. The objective of this work was to add some new strategies to calculate Weibull parameters and assess wind energy potential. A new approach calculates Weibull parameters; we also developed an alternate formula to calculate shape parameters instead of the gamma function. We obtained k (shape parameter) and c (scale parameter) for two-parameter Weibull distribution using five statistical methods for five different cities in Pakistan. Maximum likelihood method, Modified Maximum likelihood Method, Method of Moment, Energy Pattern Method, Empirical Method, and have been to calculate and differentiate the values of (shape parameter) k and (scale parameter) c. The performance of these five methods is estimated using the Goodness-of-Fit Test, including root mean square error, mean absolute bias error, mean absolute percentage error, and chi-square error. The daily 10-minute average values of wind speed data (obtained from energydata.info) of different cities of Pakistan for the year 2016 are used to estimate the Weibull parameters. The study finds that Hyderabad city has the largest wind potential than Karachi, Quetta, Lahore, and Peshawar. Hyderabad and Karachi are two possible sites where wind turbines can produce reasonable electricity.

Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan

  • Tomokiyo, Eriko;Maeda, Junji;Ishida, Nobuyuki;Imamura, Yoshito
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.345-357
    • /
    • 2004
  • In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

Study on the Aerodynamic Analysis of the High-Speed EMU (동력분산형 고속철도의 공력해석기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Through Korean high speed train development project "G7 Leading Technology Development Project" from 1996 to 2002, HSR-350X has been developed. It can run the maximum operating speed of 350 km/h. Based on this technology, KTX-2 which will be served commercially has been developed till 2007. This paper introduces the aerodynamic analysis of the High-Speed EMU and shows the results of optimized aerodynamic nose shape design techniques and clean pantograph panhead original techniques study. These are the important parts of developments for high speed train which maximum speed is 400 km/h. Especially for decrease of tunnel micro pressure waves, the optimized nose area distributions were derived and the characteristics of micro pressure wave were analyzed. The robust optimized pantograph panhead shapes investigated to improve the performance and decrease the vortex flow which is thought to be its noise source. These shapes are clean and robust to external disturbances like unsteady accelerated flow or side wind was derived. Finally aerodynamic performances was verified with PIV and smog visualization by wind tunnel test.

  • PDF

Studies on the Structural Design of Biological Production Facility I. Frequency Analysis of Weather Data for Design Load Estimation (생물생산시설의 구조설계에 관한 연구 I. 설계하중 산정을 위한 기상자료 빈도분석)

  • 김문기;손정익;남상운;이동근;이석재
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • This study was attemped to provide some fundamental data for the safety structural design of biological production facility. Wind speed and snow depth according to recurrence intervals for design load estimation were calculated by frequency analysis using the weather data of 60 stations in Korea. The following results were obtained : 1. Type-I extremal distribution was selected for the probability density function of yearly maximum wind speed and snow depth and result of Chi-square goodness of fit showed highly significance at most regions. 2. Design frequency factors for given number of samples and recurrence intervals were calculated, and also design wind speed and snow depth as shown in Table 5-Table 6 and Fig.3-Fig.4 were derived. 3. About 46.4% of the winds having maximum wind speed at every station was analyzed to be same direction, and the consideration of this fact may improve the structural safety. 4. Considering wind speed and snow depth, protected cultivation is very difficult in Ullungdo and the Youngdong districts, and strong structural design is needed in the Chungnam and Junbuk west seaside against snow depth and the west-south seaside against wind speed in Korea.

  • PDF

Variation of Hydro-Meteorological Variables in Korea

  • Nkomozepi, Temba;Chung, Sang-Ok;Kim, Hyun-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.135-143
    • /
    • 2014
  • The variability and temporal trends of the annual and seasonal minimum and maximum temperature, rainfall, relative humidity, wind speed, sunshine hours, and runoff were analyzed for 5 major rivers in Korea from 1960 to 2010. A simple regression and non-parametric methods (Mann-Kendall test and Sen's estimator) were used in this study. The analysis results show that the minimum temperature ($T_{min}$) had a higher increasing trend than the maximum temperature ($T_{max}$), and the average temperature increased by about $0.03^{\circ}C\;yr.^{-1}$. The relative humidity and wind speed decreased by $0.02%\;yr^{-1}$ and $0.01m\;s^{-1}yr^{-1}$, respectively. With the exception of the Han River basin, the regression analysis and Mann-Kendall and Sen results failed to detect trends for the runoff and rainfall over the study period. Rapid land use changes were linked to the increase in the runoff in the Han River basin. The sensitivity of the evapotranspiration and ultimately the runoff to the meteorological variables was in the order of relative humidity > sunshine duration > wind speed > $T_{max}$ > $T_{min}$. Future studies should investigate the interaction of the variables analyzed herein, and their relative contributions to the runoff trends.

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.