• Title/Summary/Keyword: maximum time interval error

Search Result 41, Processing Time 0.032 seconds

Digital Conversion Error Analysis in a Time-to-Digital Converter (시간-디지털 변환기에서 디지털 변환 에러 분석)

  • Choi, Jin-Ho;Lim, In-Tack
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.520-521
    • /
    • 2017
  • The converted error is occurred by the time difference between the time interval signal and the clock in a Time-to-Digital Converter of counter-type. If the clock period is $T_{CLOCK}$ the converted error is a maximum $T_{CLOCK}$ by the time difference between the start signal and the clock. And the converted error is a maximum $-T_{CLOCK}$ by the time difference between the stop signal and the clock. However, when the clock is synchronized with the start signal and the colck is generated during the time interval signal the range of converted digital error is from 0 to $(1/2)T_{CLOCK}$.

  • PDF

A Study on Frequency Modulation Method to Reduce Time Interval Error (주파수 변조 기법에 의한 시간격 오차 개선에 대한 연구)

  • Ahn, Tae-Won;Lee, Won-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • This paper presents a method to improve time interval error for asynchronous communication systems. The proposed method is designed and simulated with multi-phase VCO, interpolator, phase selector, up-down counter, comparator and adder. The simulation results for CAN communication system show that the maximum time interval error can be tightly managed for satisfying the required specification. The proposed frequency modulation method can be properly used for asynchronous communication systems requiring high reliability.

A Low EMI Spread Spectrum Clock Generator Using TIE-Limited Frequency Modulation Technique (TIE 제한 주파수 변조 기법을 이용한 낮은 EMI 분산 스펙트럼 클록 발생기)

  • Piao, Taiming;Wee, Jae-Kyung;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.537-543
    • /
    • 2013
  • This paper proposed a low EMI spread spectrum clock generator (SSCG) using discontinuous frequency modulation technique. The proposed SSCG is designed for triangular frequency modulation with high modulation depth. When the maximum time interval error (MTIE) of the SSCG is higher than given limit, the output frequency of SSCG is divided by two and used for reducing the time interval error (TIE). This discontinuous frequency modulation technique can effectively reduce the EMI within given limit. The simulated EMI of proposed SSCG was reduced by 18.5dB than that of conventional methods.

Determination of the Optimal Aggregation Interval Size of Individual Vehicle Travel Times Collected by DSRC in Interrupted Traffic Flow Section of National Highway (국도 단속류 구간에서 DSRC를 활용하여 수집한 개별차량 통행시간의 최적 수집 간격 결정 연구)

  • PARK, Hyunsuk;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.63-78
    • /
    • 2017
  • The purpose of this study is to determine the optimal aggregation interval to increase the reliability when estimating representative value of individual vehicle travel time collected by DSRC equipment in interrupted traffic flow section in National Highway. For this, we use the bimodal asymmetric distribution data, which is the distribution of the most representative individual vehicle travel time collected in the interrupted traffic flow section, and estimate the MSE(Mean Square Error) according to the variation of the aggregation interval of individual vehicle travel time, and determine the optimal aggregation interval. The estimation equation for the MSE estimation utilizes the maximum estimation error equation of t-distribution that can be used in asymmetric distribution. For the analysis of optimal aggregation interval size, the aggregation interval size of individual vehicle travel time was only 3 minutes or more apart from the aggregation interval size of 1-2 minutes in which the collection of data was normally lost due to the signal stop in the interrupted traffic flow section. The aggregation interval that causes the missing part in the data collection causes another error in the missing data correction process and is excluded. As a result, the optimal aggregation interval for the minimum MSE was 3~5 minutes. Considering both the efficiency of the system operation and the improvement of the reliability of calculation of the travel time, it is effective to operate the basic aggregation interval as 5 minutes as usual and to reduce the aggregation interval to 3 minutes in case of congestion.

Combined Time Synchronization And Channel Estimation For MB-OFDM UWB Systems

  • Kareem, Aymen M.;El-Saleh, Ayman A.;Othman, Masuri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1792-1801
    • /
    • 2012
  • Symbol timing error amounts to a major degradation in the system performance. Conventionally, timing error is estimated by predefined preamble on both transmitter and receiver. The maximum of the correlation result is considered the start of the OFDM symbol. Problem arises when the prime path is not the strongest one. In this paper, we propose a new combined time and channel estimation method for multi-band OFDM ultra wide-band (MB-OFDM UWB) systems. It is assumed that a coarse timing has been obtained at a stage before the proposed scheme. Based on the coarse timing, search interval is set (or time candidates). Exploiting channel statistics that are assumed to be known by the receiver, we derive a maximum a posteriori estimate (MAP) of the channel impulse response. Based on this estimate, we discern for the timing error. Timing estimation performance is compared with the least squares (LS) channel estimate in terms of mean squared error (MSE). It is shown that the proposed timing scheme is lower in MSE than the LS method.

A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution (메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

Design of Optimized Interval Type-2 Fuzzy Controller and Its Application (최적 Interval Type-2 퍼지 제어기 설계 및 응용)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1624-1632
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized Interval Type-2 fuzzy controller. The fixed MF design of type-1 based FLC leads to the difficulty of rule-based control design for representing the linguistically uncertain expression. In the Type-2 FLC as the expanded type of Type-1 FLC, we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. Type-2 FLC has a robust characteristic in the unknown system with unspecific noise when compared with Type-1 FLC. Through computer simulation as well as practical experiment, we compare their performance by applying both the optimized Type-1 and Type-2 fuzzy cascade controllers to ball and beam system. To evaluate each controller performance, we consider controller characteristic parameters such as maximum overshoot, delay time, rise time, settling time and steady-state error.

Logistic Regression Method in Interval-Censored Data

  • Yun, Eun-Young;Kim, Jin-Mi;Ki, Choong-Rak
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.871-881
    • /
    • 2011
  • In this paper we propose a logistic regression method to estimate the survival function and the median survival time in interval-censored data. The proposed method is motivated by the data augmentation technique with no sacrifice in augmenting data. In addition, we develop a cross validation criterion to determine the size of data augmentation. We compare the proposed estimator with other existing methods such as the parametric method, the single point imputation method, and the nonparametric maximum likelihood estimator through extensive numerical studies to show that the proposed estimator performs better than others in the sense of the mean squared error. An illustrative example based on a real data set is given.

A New Simplified Clock Synchronization Algorithm for Indoor Positioning (실내측위를 위한 새로운 클락 동기 방안)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Seong-Woo;Lee, Chang-Bok;Kim, Young-Beom;Choe, Seong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.237-246
    • /
    • 2007
  • Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.

Analysis of Checkpointing Model with Instantaneous Error Detection (즉각적 오류 감지가 가능한 경우의 체크포인팅 모형 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.170-175
    • /
    • 2022
  • Reactive failure management techniques are required to mitigate the impact of errors in high performance computing. Checkpoint is the standard recovery technique for coping with errors. An application employing checkpoints periodically saves its state, so that when an error occurs while some task is executing, the application is rolled back to its last checkpointed task and resumes execution from that task onward. In this paper, assuming the time-to-errors are independent each other and generally distributed, we analyze the checkpointing model with instantaneous error detection. The conventional assumption that two or more errors do not take place between two consecutive checkpoints is removed. Given the checkpointing time, down-time, and recovery time, we derive the reliability of the checkpointing model. When the time-to-error follows an exponential distribution, we obtain the optimal checkpointing interval to achieve the maximum reliability.