• Title/Summary/Keyword: maximum thrust

Search Result 247, Processing Time 0.025 seconds

Effect of Initial Track Tension on the Tractive Performance of Tracked Vehicles (궤도의 초기 장력이 궤도 차량의 견인 성능에 미치는 영향)

  • 김채주;김경욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • A computer program was developed to simulate effect of the initial track tension on the tractive performance of tracked vehicles. The performance was evaluated in terms of drawbar pull, motion resistance, tractive coefficient and tractive efficiency. Results of the simulation showed that increase in track tension decreases the sinkage and mean maximum pressure in clay, making the ground pressure distribution more uniform. This tendency became more evident when the number of roadwheels increased. However, such change in MMPs was negligible in firm soils. Motion resistance was also decreased with increase in track tension and the number of roadwheels. Under weak soil conditions, tractive coefficient and efficiency increased generally as the track tension increased for a slip range of 10∼30%. For slippage less than 3∼4%, however, the tractive coefficient decreased with increase in track tension. In general, it was known that increasing track tension improves tractive performance in weak soil conditions. However, high track tension can reduce efficiency due to the increment of internal motion resistance caused by increased track tension.

  • PDF

Some case studies of hydrodynamic bearings in power plants in Japan

  • M Tanaka
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.1-11
    • /
    • 2003
  • The service reliability of power plants strongly depends on the excellent performance and integrity of hydrodynamic bearings. Consequently, the bearings must be properly designed so as to control vibration amplitudes of rotor due to mass unbalance in passing critical speeds and also suppress self-excited vibrations of rotor even over maximum rated speeds. Furthermore, the bearings must be designed so as to maintain required tribological performance even under severe operating conditions. However, various tribological troubles have been experienced in power plants in Japan. The actual troubles are analysed, focusing on not only direct mechanical causes but also specific bearing designs that surfaced the troubles. Furthermore human factors that decided such designs are also studied. The powerful database of troubles and analyses will contribute greatly to designing advanced power plants with enhanced service reliability in the future. To this end, trouble information should be disclosed, shared and transferred limitlessly. Cooperation of users of power plants is essential to making more advanced design specifications, because no one has easier access to operating and trouble information of power plants than users.

  • PDF

A Study of Axial Vibration of Two Stroke Low Speed Diesel Engine on the Diesel Power Plant (육상 디젤 발전소용 저속 2행정 디젤엔진의 종진동에 관한 연구)

  • 이돈출;남정길;고재용
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.398-405
    • /
    • 2001
  • The maximum and mean indicated pressure of two stroke low speed diesel engine has been continuously increased with a view of increasing engine power and also reducing fuel consumption. As a result, axial excitation has been increased comparing to that of the previous one. So the axial vibration damper in standard one is applied to all two stroke low speed diesel engine at the free end of crankshaft. Though many studies were carried out for marine use, few has been made for diesel power plant because there was little demand for power plant. Nowadays, diesel engine is much to be used for many benefits. In this paper, the optimum design of axial vibration on the 65 kW diesel power plant with tow 9K80MC-S engines of 9 cylinders was carried out. And the axial-torsional coupled vibration of this shafting system is identified by theoretical analysis and vibration measurement.

  • PDF

Hydraulic Performance Test of a Turbopump Inducer using Liquid Nitrogen (액체질소를 이용한 터보펌프 인듀서의 수력성능시험)

  • Kim Jin-Sun;Hong Soon-Sam;Kim Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.20-26
    • /
    • 2006
  • A cryogenic test facility has been developed to perform inducer and pump tests using liquid nitrogen. Performance tests of a turbopump in the maximum 50ton-thrust class can be performed with cryogenic fluid in the facility which operates at a temperature around -196oC with the rotational speed up to 30,000rpm To verify the reliability of the cryogenic pump test facility, hydraulic performance tests of an inducer were accomplished, and their results were compared with the result from a water test. The results confirm the reliability of the cryogenic test facility, and it is expected to contribute for on-going development of a turbopump for liquid rocket engines.

Airfoil Design for Martian Airplane Considering Using Global Optimization Methodology

  • Kanazaki, Masahiro;Utsuki, Motohiro;Sato, Takaya;Matsushima, Kisa
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2015
  • To design airfoils for novel airplanes, new knowledge of aerodynamics is required. In this study, modified Parametric SECtion (PARSEC) which is a airfoil representation is applied to airfoil design using a multi-objective genetic algorithm to obtain an optimal airfoil for consideration in the development of a Martian airplane. In this study, an airfoil that can obtain a sufficient lift and glide ratio under lower thrust is considered. The objective functions are to maximize maximum lift-to-drag ratio and to maximize the trailing edge thickness. In this way, information on the low Reynolds number airfoil could be extracted efficiently. The optimization results suggest that the airfoil with a sharper thickness at the leading edge and higher camber at the trailing edge is more suitable for a Martian airplane. In addition, several solutions which has thicker trailing edge thickness were found.

Computer simulation for the Prediction of Mobility and Tractive Performance of Tracked Vehicles (궤도형 로외차량의 주행 및 견인 성능 예측 컴퓨터 시뮬레이션)

  • 김경욱;신범수;김채주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.105-112
    • /
    • 1994
  • A computer program was developed for the simulation of mobility and tractive performance of tracked off-road vehicles. Input parameters for the simulation involve those characterizing track and power drive line of a vehicle and soil conditions upon which the vehicle operates. The simulation predicts tractive performance in terms of soil thrust and motion resistance of track device and mobility performance in terms of the maximum speed, time-distance and time-speed relation that a vehicle can obtain under the given soil conditions. It also determines whether or not the vehicle can move in those conditions. An example of performing simulation was presented and its results showed that the performance prediction was reasonably in a good agreement with the published data.

  • PDF

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

PLITHOGENIC VERTEX DOMINATION NUMBER

  • T. BHARATHI;S. LEO;JEBA SHERLIN MOHAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.625-634
    • /
    • 2024
  • The thrust of this paper is to extend the notion of Plithogenic vertex domination to the basic operations in Plithogenic product fuzzy graphs (PPFGs). When the graph is a complete PPFG, Plithogenic vertex domination numbers (PVDNs) of its Plithogenic complement and perfect Plithogenic complement are the same, since the connectivities are the same in both the graphs. Since extra edges are added to the graph in the case of perfect Plithogenic complement, the PVDN of perfect Plithogenic complement is always less than or equal to that of Plithogenic complement, when the graph under consideration is an incomplete PPFG. The maximum and minimum values of the PVDN of the intersection or the union of PPFGs depend upon the attribute values given to P-vertices, the number of attribute values and the connectivities in the corresponding PPFGs. The novelty in this study is the investigation of the variations and the relations between PVDNs in the operations of Plithogenic complement, perfect Plithogenic complement, union and intersection of PPFGs.

Numerical Technique to Analyze the Flow Characteristics of a Propeller Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 프로펠러의 유동특성해석 방법에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.441-448
    • /
    • 2016
  • The thrust force created by a propeller depends on the incoming flow velocity and the rotational velocity of the propeller. The performance of the propeller can be described by dimensionless variables, advanced ratio, thrust coefficient, and power coefficient. This study included the application of the immersed boundary lattice Boltzmann method (IBLBM) with the stereo lithography (STL) file of the rotating object for performance analysis. The immersed boundary method included the addition of the external force term to the LB equation defined by the velocity difference between the lattice points of the propeller and the grid points in the domain. The flow by rotating a 4-blade propeller was simulated with various Reynolds numbers (Re) (including 100, 500 and 1000), with advanced ratios in the range of 0.2~1.4 to verify the suggested method. The typical tendency of the thrust efficiency of the propeller was obtained from the simulation results of different advanced ratios. It was also necessary to keep the maximum mesh size ratio of the propeller surface to a grid size below 3. Additionally, a sufficient length of the downstream region in the domain was maintained to ensure the numerical stability of the higher Re and advanced ratio flow.

Effect of Spiral Turbulent Ring on Detonation Performances of Acetylene-Oxygen Mixture (나선형 난류고리가 아세틸렌-산소 혼합기의 데토네이션파 성능에 미치는 영향)

  • Son, Min;Seo, Chanwoo;Lee, Keon Woong;Koo, Jaye;Smirnov, N.N.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.9-15
    • /
    • 2013
  • An effect of a spiral turbulent ring, so-called Shchelkin spiral, on a detonation performance was studied experimentally for acetylene and oxygen mixture. A couple of dynamic pressure transducers were used to calculate a detonation wave velocity by a time difference between two pressure peaks. In addition, impulse was measured by a load cell and the impulse was used to analyze the spiral effect on the detonation performance. A CFD analysis was adopted to calculate mass flow rates of the propellants and the minimum filling time. The maximum velocity and pressure were measured at the equivalence ratio of 2.4, and the measured values showed similar trend to C-J conditions calculated from CEA. For the shorter chamber with the short spiral, the maximum detonation velocity was appeared. In contrast, the longer chamber without the spiral showed the maximum thrust performance.