• Title/Summary/Keyword: maximum sustainable yield

Search Result 58, Processing Time 0.024 seconds

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Effect of Food Waste Compost on Crop Productivity and Soil Chemical Properties under Rice and Pepper Cultivation

  • Lee, Chang Hoon;Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.682-688
    • /
    • 2016
  • Food waste has recognized one of useful sources for potentially agricultural application to supply organic matter and nutrients in arable soil. However, there was little information on application of food waste compost related to the maturity and NaCl content in arable soil. This study evaluated the effect of food waste compost application on yield and fertility in soil under flooding and upland condition. The yields in rice and pepper cultivation decreased with increasing the rate of food waste compost application in soil (p<0.05). Maximum yields of rice ($49.0g\;plant^{-1}$) and pepper ($204g\;plant^{-1}$) were shown at 10 and $30Mg\;ha^{-1}$ of food waste compost application, respectively. The N, P, and K contents in grain and plant residues increased by the application of food waste compost, there was no difference on Na/K ratio in plant tissue among the treatments. Application of food waste compost resulted in the increase of pH, EC, TC, available P contents in soil after crop harvest, especially, which was shown the increase of the CEC and exchangeable sodium percentage (ESP) contents in irrespective of water condition. In conclusion, application of food waste compost in soil was effective on the supply of the organic matter and nutrient. However, it might need caution to apply food waste compost for sustainable productivity in arable soil because of potential Na accumulation.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

A Study on Fisheries Resources Control Systems by Total Allowable Catch (총허용어획량(總許容漁獲量)에 의한 어업자원관리제도(漁業資源管理制度)에 관한 연구)

  • Cha, Cheol-Pyo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.2
    • /
    • pp.162-183
    • /
    • 1998
  • The fisheries resources control system in the Fisheries Act of Korea is introducing technical management method and input control method that controls fishing effort. Fishing effort control system of Korea aiming at realizing the maximum sustainable yield does not regulating the limitation of fishing quota and the limitation of fisheries object target fish. Therefore fishing operators who have fishing permit can use fishery resources without any restriction of fishing quota. But there are no rules that can controlling capacity of productivity of fishing by developing of fishing technic and fishing gear. For those reasons, productivity of fishing is superior to reproductivity of fisheries resources. Therefore, the Fisheries Act of Korea rearranges a legal basis for an introduction of fisheries resources management system by TAC, but the contents to be possible for a legal guarantee is not included and it is exceedingly defective as abstract and institutional devices. And that the affairs to be required for an enforcement of the said regime was placed in an administrative mandatory legislation and the danger to be degenerated is high in accordance with the bureaucratic self-righteous and/or the coercion of group's interest concerned and accordingly its substitute legislation system is keenly required. TAC system that is going to be introduced in our country is expected to enforce the Olympic fishing method and the individual quota method in parallel. This method is not certainly proper, because it occurs to overcapitalize and to compete fishing amounts between fishery operators. So as to prevent overcapitalization and fishing competition between fishery operators, and the exhaustion of coastal fisheries resources, individual transferable quota system should be introduced in Korean sea. Accordingly this thesis has attempted to constitute a view to improving problems of the traditional fisheries resources control system and introducing TAC fisheries resources control system.

  • PDF

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

Study to Select a Strategic Fisheries for the Encouragement of a Long Term Planning Project in the Korean Fishing Industry. (한국어업의 장기적 진흥계획을 위한 전략 업종 선정에 관한 연구)

  • 장수호
    • The Journal of Fisheries Business Administration
    • /
    • v.1 no.1
    • /
    • pp.19-68
    • /
    • 1970
  • This is a study of a long term project to encourage the Korean fishing industry. It seeks to supply a sound theoretical background in an attempt to liberalize the capital investment of the industry. However, the discussions developed in this thesis are based on, the existing world's fisheries resources, the possibility of their prospective cultivation, and the analysis of the evolution of Korean fisheries and fisheries organization. According to the reasults of the analysis ; out of the prospective world fisheries resources which are estimated at about 200 millions m/t the total yield per year is only about 70 millions m/t (1969), and Korea occupies only 850 thousands m/t. This therefore means that the Korean fishing industry allows much room for further growth. But the purpose of Korea's existing fishing industry organizations is entirely directed toword coastal fisheries and their functions never reache beyond the limit of off-shore fisheries. Thus almost 99% of the fisheries population engage in small scale fisheries along the coast line. The result is that the resource are almost exhausted by such over-exploitation. Being faced by this fact, it is of urgent necessity to modernize the management of fisheries as well as to encourage larger scale management of fisheries industries. This should be accompanied by the liberalization of capital investment. For this purpose this study also recommends the unification or annexation of small organizations to establish larger ones that will function for a larger scale industry. and further this study recommends that, in order to reorganize the existing fisheries organizations, a principle of selection should be applied in the areas of (1) maximum sustainable yields, (2) the possibility of forming an enterprise and (3) the maintenance of organization stability.

  • PDF

Wastewater from Instant Noodle Factory as the Whole Nutrients Source for the Microalga Scenedesmus sp. Cultivation

  • Whangchenchom, Worawit;Chiemchaisri, Wilai;Tapaneeyaworawong, Paveena;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.283-287
    • /
    • 2014
  • Cultivation of microalgae using wastewater exhibits several advantages such as nutrient removal and the production of high valuable products such as lipid and pigments. With this study, two types of wastewater from instant noodle factory; mixed liquor suspended solids (MLSS) and effluents after sedimentation tank were investigated for green microalga Scenedesmus sp. cultivation under laboratory condition. Optimal wastewater dilution percentage was evaluated in 24 wells microplate. MLSS and effluent without dilution showed the highest specific growth rate (${\mu}$) of $1.63{\pm}0.11day^{-1}$ and $1.57{\pm}0.16day^{-1}$, respectively, in which they were significantly (p < 0.05) higher than Scenedesmus sp. grown in BG11 medium ($1.08{\pm}0.14day^{-1}$). Ten days experiment was also conducted using 2000 ml Duran bottle as culture vessel under continuous light at approximately 5000 lux intensity and continuous aeration. It was found that maximum biomass density of microalgae cultivated in MLSS and effluent were $344.16{\pm}105.60mg/L$ and $512.89{\pm}86.93mg/L$ respectively and there was no significant (p < 0.05) difference on growth to control (BG11 medium). Moreover, cultivation microalgae in wastewater could reduce COD in wastewater by 39.89%-73.37%. Therefore, cultivation of Scenedesmus sp. in wastewater from instant noodle factory can yield microalgae biomass production and wastewater reclamation using photobioreactor simultaneously.

Stock assessment and management of blackthroat seaperch Doederleinia seaperch using Bayesian state-space model (베이지안 State-space 모델을 이용한 눈볼대 자원평가 및 관리방안)

  • CHOI, Ji Hoon;KIM, Do Hoon;CHOI, Min-Je;KANG, Hee Joong;SEO, Young Il;LEE, Jae Bong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.95-104
    • /
    • 2019
  • This study is aimed to take a stock assessment of blackthroat seaperch Doederleinia seaperch regarding the fishing effort of large-powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery. For the assessment, the state-space model was implemented and the standardized catch per unit effort (CPUE) of large powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery which is necessary for the model was estimated with generalized linear model (GLM). The model was adequate for stock assessment because its r-square value was 0.99 and root mean square error (RMSE) value was 0.003. According to the model with 95% confidence interval, maximum sustainable yield (MSY) of Blackthroat seaperch is from 2,634 to 6,765 ton and carrying capacity (K) is between 33,180 and 62,820. Also, the catchability coefficient (q) is between 2.14E-06 and 3.95E-06 and intrinsic growth rate (r) is between 0.31 and 0.72.

Comparative Analysis on Surplus Production Models for Stock Assessment of Red Snow Crab Chinonoecetes japonicus (붉은대게(Chinonoecetes japonicus) 자원평가를 위한 잉여생산량모델의 비교 분석)

  • Choi, Ji-Hoon;Kim, Do-Hoon;Oh, Taeg-Yun;Seo, Young Il;Kang, Hee Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.925-933
    • /
    • 2020
  • This study is aimed to compare stock assessment models which are effective in assessing red snow crab Chinonoecetes japonicus resources and to select and apply an effective stock assessment model in the future. In order to select an effective stock assessment model, a process-error model, observation-error model, and a Bayesian state-space model were estimated. Analytical results show that the least error is observed between the estimated CPUE (catch per unit effort) and the observed CPUE when using the Bayesian state-space model. For the Bayesian state-space model, the 95% credible interval(CI) ranges for the maximum sustainable yield (MSY), carrying capacity (K), catchability coefficient (q), and intrinsic growth (r) are estimated to be 10,420-47,200 tons, 185,200-444,800 tons, 3.81E-06-9.02E-06, and 0.14-0.66, respectively. The results show that the Bayesian state-space model was most reliable among models.