• 제목/요약/키워드: maximum stress

검색결과 3,535건 처리시간 0.032초

탄성유체 윤활상태와 접선하중을 고려한 접촉표면 내부의 응력해석 (Subsurface Stress Analysis with the Consideration of Tangential Loading and Elasto-Hydrodynamic Lubrication)

  • 구영필
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.190-196
    • /
    • 2004
  • The effect of tangential loading on the subsurface stress field has been investigated numerically. As tangential load increases, the subsurface stress field expands more widely to the direction of the tangential load. Places of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load in an elasto-hydrodynamic lubrication condition is so low that it does not affect the subsurface stress field.

다양한 마이크로쓰레드(Micro thread)의 개수를 가지는 임플란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구 (Three-dimensional Stress Analysis of Implant Systems with Micro Threads in the Maxillary Bone)

  • 신하식;한종현;이수홍;전흥재
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.179-186
    • /
    • 2005
  • A comparative study of stress distributions in the maxillary bone with three different types of abutment was conducted. Finite element analysis was adopted to determine stress generated in the bone with the different implant systems with micro threads (Onebody type implant, Internal type implant, and External type implant). It was found that the types of abutments and the number of micro threads have significant influence on the stress distribution in the maxillary bone. They were due to the difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the maxillary bone was increased with increasing inclination angle of load. It was concluded that the maximum effective stress in the bone was the lowest by the internal implant among the maximum effective stresses by other two types of implants and by appropriate number of micro threads, and that the specific number of micro thread was existed to decrease the maximum effective stress in the maxillary bone due to different implant systems and loading conditions.

원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 음력해석 (Stress Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge)

  • 이성욱;심재준;한동섭;한근조;안찬우;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.749-752
    • /
    • 2002
  • In this study, we carried out the finite element analysis about screw that is the weakest part of the centrifuge for sewage management. Structural analysis was done with respect to the change of outer radius and thickness of screw blade and screw with sewage discharge hole. If the area of circular hole is equal to that of extended holes, maximum equivalent stress was compared between hole and extended hole. Centrifugal force on account of rotation of 4000 rpm was applied the screw. The results are as follows : 1 . When the larger radius and thickness of screw blade was used, the higher maximum equivalent stress is occurred. 2. When the larger radius of sewage discharge hale was used, the higher maximum equivalent stress is occurred. 3. When the longer parallel part length of extended hole was used, the higher maximum equivalent stress is occurred. 4. If the extended hole with the same discharging area which circular hole uses, the maximum equivalent stress is lower.

  • PDF

자전거 안장에서의 구조적 내구성 해석에 관한 연구 (Study on Structural Durability Analysis at Bicycle Saddle)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

Congestion effect on maximum dynamic stresses of bridges

  • Samanipour, Kianoosh;Vafai, Hassan
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.111-135
    • /
    • 2015
  • Bridge behavior under passing traffic loads has been studied for the past 50 years. This paper presents how to model congestion on bridges and how the maximum dynamic stress of bridges change during the passing of moving vehicles. Most current research is based on mid-span dynamic effects due to traffic load and most bridge codes define a factor called the dynamic load allowance (DLA), which is applied to the maximum static moment under static loading. This paper presents an algorithm to solve the governing equation of the bridge as well as the equations of motions of two real European trucks with different speeds, simultaneously. It will be shown, considering congestion in eight case studies, the maximum dynamic stress and how far from the mid-span it occurs during the passing of one or two trucks with different speeds. The congestion effect on the maximum dynamic stress of bridges can make a significant difference in the magnitude. By finite difference method, it will be shown that where vehicle speeds are considerably higher, for example in the case of railway bridges which have more than one railway line or in the case of multiple lane highway bridges where congestion is probable, current designing codes may predict dynamic stresses lower than actual stresses; therefore, the consequences of a full length analysis must be used to design safe bridges.

알루미늄 프로파일의 체결방법이 응력과 변위에 미치는 영향 (Effect on the Stress and Displacement of Aluminum Profiles Fastening Method)

  • 허장욱;신백천
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.99-104
    • /
    • 2015
  • This study analyzed the effects on displacement and stress as a result of improving the profile fastening method targeting rectangular-shaped and cube-shaped specimens. For the rectangular-shaped specimens, the improved fastening method reduced maximum displacement to 41.7% and maximum stress to 18.3% compared to the existing fastening method. For the cube-shaped specimens, maximum displacement and maximum stress results were found to be similar to those of the rectangular-shaped specimens. Thus, as a result of comparing the stress and displacement of the existing and improved fastening methods, it was found that the improved fastening method is superior to the existing fastening method in terms of load support.

페달의 내구성에 대한 구조 해석 (Structural Analysis on Durability of Pedal)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.88-95
    • /
    • 2011
  • In this study, the deformation, stress, vibration, fatigue life and the probability of damage are analyzed at the pedal applied by the force of 300N. The maximum stress at the lower of pedal is shown as 20.801MPa. And the maximum displacement is 0.85mm at the maximum response frequency as 3800Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{5}MPa$ and the amplitude stress of 0 to $10^{5}MPa$, the possibility of maximum damage becomes 0.6%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively improved with the design of pedal by investigating durability against its damage.

단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성 (Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode)

  • 권종완;양현태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.

휴대폰 재질에 따른 충격 해석 (Impact Analysis According to Material of Hand Phone)

  • 조재웅;민병상;한문식
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.69-75
    • /
    • 2009
  • This study is analyzed by impact simulation according to material property at terminal case of hand phone. Maximum equivalent stress or strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest stress or strain is shown at aluminium alloy. The value of maximum equivalent stress is shown as 6.5 Mpa in case of plastic, magnesium alloy and aluminium alloy. Maximum shear strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest strain is shown at aluminium alloy. The value of deformation or strain at magnesium alloy and aluminium alloy is not different.

  • PDF

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.