• Title/Summary/Keyword: maximum size of coarse aggregate

Search Result 62, Processing Time 0.05 seconds

A Study of Characteristics Change of Low-Shrinkage Normal Strength Concrete According to Mixing Factors and curing Temperature (배합요인과 양생온도에 따른 일반강도 초저수축 콘크리트의 특성 변화 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.342-347
    • /
    • 2016
  • This study examined the effects of the coarse aggregate maximum size and grading of fine aggregates to acquire the characteristics of very low shrinkage on normal strength concrete mixed in the field. In addition, the shrinkage characteristics of concrete under construction were evaluated in accordance with the curing temperature. The compressive strength and drying shrinkage tests were performed for nine mixing factors composed of the coarse aggregate size (13, 20, and 25 mm), types of fine aggregate (see sand, crushed sand, and blended sand), and curing temperatures (5, 20, and $35^{\circ}C$). To acquire low shrinkage properties under $350{\mu}{\varepsilon}$ strain on normal strength concrete, a 25 mm maximum of coarse aggregate was available, and the grading of fine aggregate affected the shrinkage of concrete. In addition, very low shrinkage properties were acquired in the curing temperature range except cold and hot weather concrete.

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.

Characteristic of Microcracks with Mixing Proportional Properties of Concrete (미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III; 배합조건 특성에 따른 미세균열의 특성)

  • Yoon, In-Seok;Kim, Young-Geun;Park, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2008
  • It is obvious that chloride penetration through cracks can threaten the durability of concrete substantially, according to the previous studies of author. It was proposed that crack depth corrseponded with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It is now necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. The purpose of this study is examining the effect of mix proportional features of concrete such as coarse aggregate, high strengtherize of concrete and reinforcement of steel fiber on chloride penetration through cracks. Although small size of coarse aggregate can lead to many microcracks in concrete, the cracks should not impact on chloride penetration directly. On the contrary, chloride should penetrate through cracks easily in concrete with a large size of coarse aggregate because mixrocracks are connected to each other. Second, high strength concrete has an excellent performance to resist with chloride penetration. However, for cracked high strength concrete, its performance is reduced upto the level of ordinary concrete. Finally, steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly.

Investigation of Aggregate Size Effect on Cracking Behavior in Concrete Fracture Test using Mechanoluminescent Paint (압광 페인트를 이용한 콘크리트 파괴시험시 골재크기가 균열성상에 미치는 영향조사)

  • Lee, Chang Joon;Kim, Wha-Jung;Kim, Ji-Sik;Jeon, Ki-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • In order to capture the fast crack propagation in an unmanipulated concrete fracture test, we employed mechanoluminascent(ML) material, which emits visible light when stressed, as a crack visualization tool. Three-point bending fracture test setup, a paint type ML material and a high speed camera were used to capture the images of fast moving cracks. The maximum size of coarse aggregates of concrete was used as an experimental parameter. The crack images, loading, and crack mouth opening displacement were successfully recorded as a function of time elapsed. From the test results, several interesting cracking behavior in the unmanipulated fracture test was observed in such that (1) the crack moves fast while the load is slowly decreased after the maximum loading, and (2) the crack in concrete with larger coarse aggregates moves faster than the others.

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.

Analysis of Debis Flow according to Change of Slope Angle (사면경사 변화에 따른 토석류의 거동 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Yoo, Nam-Jae;Han, Kwang-Doo;Yoon, Young-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1294-1301
    • /
    • 2010
  • This study is an experimental research for the dispersion behavior and impact characteristics of debris flow according to change of slope. Large scale experimental setup for the debris flow was established to simulate the artificial rainfall and control the ground slope. Parameters such as materials of debris flow, slope, and length of slope were used for the experiments. After the experiments, it was found that the speed of ground material components was increased about 28~47%. It was found that speed can be increased by increasing the particle size. Furthermore, maximum/final loads for ground material components were increased 89% for the coarse aggregate and 68% for the fine aggregate comparing with sand.

  • PDF

Estimating Compressive Strength of High Strength Concrerte by Ultrasonic Pulse Velocity Method (초음파속도법에 의한 고강도 콘크리트의 압축강도 추정에 관한 연구)

  • Lim, Seo-Hyung;Kang, Hyun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this study is to suggest the non-destructive equation for the estimation of concrete strength by ultrasonic pulse velocity at the Age of 28day compressive strength of $600{\sim}1000kg/cm^2$. For this purpose, selected test variables were water-hinder ratio, replacement ratio of silica fume, binder content, maximum size of coarse aggregate and sand-aggregate ratio. From the results, the average increase or decrease of ultrasonic pulse velocity is 61m/sec for each 1% of moisture content. And the correlation equation between the ultrasonic pulse velocity and the compressive strength of concrete is as follows. $F_c=896.3V_p-3514$ ($R^2$ = 0.81) where, $F_c$ : compressive strength($kgf/cm^2$), $V_p$ : ultrasonic velocity(km/sec).

  • PDF

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Development of Ready-mixed Shotcrete I : Basic Study (레디믹스트 숏크리트 개발 I : 기초 연구)

  • Kim, Dong-Min;Ma, Sang-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.171-185
    • /
    • 2011
  • Ready-mixed shotcrete that mixed with high quality aggregate and can improve construction quality is produced in a dry mortar plant and transported to construction sites. Because of using aggregate that produced in a special plant, Ready-mixed shotcrete has many advantages : good grain-size distribution, minimum stone powder, high quality and standardization material, etc. In this basic study different from the existing study that limited to additive and accelerator, the improvement of aggregate quality was tried to upgrade the shotcrete performance. The investigation about the construction conditions of shotcrete was performed and the result of an opinion poll was analyzed for a good grasp of the problems in domestic shotcrete quality. Pilot Plant Test was also performed to minimize the material segregation in plant manufacturing process. In additions, the field test was performed to find the optimum contents of synthetic fiber, appearing the same flexible toughness with that of steel fiber, and to find the optimum replacement ratio of blast furnace slag.