• Title/Summary/Keyword: maximum shear strain

Search Result 245, Processing Time 0.027 seconds

A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis (유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구)

  • Na, D.H.;Huh, J.W.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

The study on optimum design for shear stress integrated pressure sensor (전단응력형 집적화 압력센서의 최적설계)

  • 주리아;도태성;이종녕;서희돈
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.75-81
    • /
    • 1998
  • This paper is to optimize single-element piezoresistor shear stress strain gauge related to aspect ratio of rectangular diaphragm. The shear stress distribution on diaphragm has been simulated by finite-element method(FEM). As simulation results, the maximum sensitivity for strain gauge was appeared at the center of diaphragm with aspect ratio 3, and in along to long edge with the ratio 2. The diaphragm with ratio 2 is not acceptable due to the yield of mask alignment in IC process technology. The optimum condition of diaphragm with respect to good sensitivity was realized in the case of ratio 3. In this case, the area by gauge was 8% of overall size of rectangular diaphragm.

  • PDF

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

Evaluations of the Maximum Shear Reinforcement of Reinforced Concrete Beams (철근콘크리트 보의 최대 전단철근비에 대한 평가)

  • Hwang, Hyun-Bok;Moon, Cho-Hwa;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.719-727
    • /
    • 2009
  • The requirements of the maximum shear reinforcement in the EC2-02 and CSA-04, which are developed based on the truss model, are quite different to those in the ACI-08 code and AIJ-99 code, which are empirical equations. The ACI 318-08, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take the influence of the concrete compressive strength into account. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-08. Ten RC beams having various shear reinforcement ratios were tested and their corresponding shear stress-shear strain curves and failure modes were compared to the predicted ones obtained by the current design codes.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

Thermomechanical and Flexural Behavior of WB-PBGA Package Using $Moir{\acute{e}}$ Interferometry (모아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Joo, Jin-Won;Lee, Chang-Hee;Han, Bong-Tae;Cho, Seung-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.90-95
    • /
    • 2001
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) are characterized by high sensitive $moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed at several various bending loads and temperature steps. At the temperature higher that $100^{\circ}C$, the inelastic deformation in solder balls became more dominant. As a result the bending of the molding compound decreased while temperature increased. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder. The results also show that $moir{\acute{e}}$ interferometry is a powerful and effective tool in experimental studies of electronic packaging.

  • PDF

The Influence of Pre-compression on the Shear Characteristics of Cohesive Soil (선행압축(先行壓縮)이 점성토(粘性土)의 전단특성(剪斷特性)에 미치는 영향(影響))

  • Kang, Yea Mook;Park, Heon Young
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.277-291
    • /
    • 1983
  • In order to investigate the shear characteristics of earth structure after construction. Four sample soils with different gradation were selected and compacted under the optimum moisture content and the maximum dry density. And the direct shear test and the triaxial compression test were performed with those sample soils under various pre-compression loads. The results were summarized as follows; 1. With the increase of the percent passing of No. 200 sieve, the cohesion of soil increased regularly and the internal friction angle of soil decreased with slow ratio. 2. The pre-compression increased the shear strength of compacted cohesive soil. The increase of cohesion was very apparent but the internal friction angle didn't show such regular tendency. 3. With the increase of pre-compression load, the slope of stress-strain curve showed steep at the early stage of horizontal strain. The vertical strain was small at the compression stage and big at the expansion stage. 4. When the vertical stress of shear test with increase in the horizontal strain was small, stress ratio(shear stress vs. vertical stress) of sample showed the largest value and the slope of stress ratio curve showed also steep. 5. When the sample was had the same condition, the cohesion of soil showed bigger value in the triaxial compression test and the internal friction angle of soil showed bigger value in the direct shear test.

  • PDF