• Title/Summary/Keyword: maximum shear strain

Search Result 248, Processing Time 0.027 seconds

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.

A Study on the Shear Behavior of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 전단거동(剪斷擧動)에 관한 연구(研究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.83-92
    • /
    • 1987
  • Fatigue fracture of reinforced concrete structures are characterized by considerably larger strains and microcracking as compared to fracture of R.C. structures under static loading. The strain of stirrup is increased suddenly by the occuring of inclined crack and the average strain ${\epsilon}_{\omega}$ of all stirrups in a structure at maximum load increase approximately in proportion to log N. The structures critical in longitudinal reinforcement seemed to have an endurance limit of 60~70 percent of static ultimate strengths for 1,000,000 cycles. In this test, the average fatigue strength at 1,000,000 cycles for all structures tested was approximately 65 percent of the static ultimate strength.

  • PDF

Determination of Damage Thresholds and Acoustic Emission Characteristics of Pocheon Granite under Uniaxial Compression

  • Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.349-365
    • /
    • 2018
  • The strain and acoustic emission (AE) signals of Pocheon granite were measured during uniaxial compression tests to investigate microcrack formation and damage. Crack closure, initiation, and damage stresses of each sample were determined through an analysis of the crack volumetric strain and stiffness. The samples experienced four damage stages according to stress levels: stage 1 = crack closure stage; stage 2 = elastic stage; stage 3 = crack initiation stage; stage 4 = crack damage stage. At least 75% of all AE signals occurred in stages 3 and 4, and different AE parameters were detected in the four stress stages. Rise time, count, energy, and duration clearly showed a tendency to gradually increase with the damage stress stage. In particular, the rise time, energy, and duration increased by at least 95% in stage 4 as compared with stage 1. However, the maximum amplitude showed a smaller increase, and the average frequency decreased slightly at higher stages. These results indicate that as the degree of rock damage increases, the crack size grows larger. The crack types corresponding to the AE signals were determined using the relationship between RA (Rise time / Amplitude) values and average frequencies. Tension cracking was dominant in all stress stages. Shear cracking was rare in stages 1 and 2, but increased in stages 3 and 4. These results are consistent with previous studies that reported cracking begins after samples have already been damaged. Our study shows that the state of rock damage can be investigated solely through an analysis of AE parameters when rocks are under compressive stress. As such, this methodology is suitable for understanding and monitoring the stress state of bedrock.

Safety Evaluation of Agricultural Reservoirs due to Raising Embankment by Field Monitoring and Numerical Analysis (현장계측과 수치해석에 의한 농업용저수지 제체의 안정성 평가)

  • Lee, Kwang Sol;Lee, Dal Won;Lee, Young Hak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.31-44
    • /
    • 2016
  • This study analyzed pore water pressure, earth pressure and settlement through field monitoring on the project site in which raising embankments are being built through backside extension, and compared the behaviors of seepage analysis, slope stability analysis and stress-strain during flood water levels and rapid drawdown under steady state and transient condition. The variation of pore water pressure showed an increase during the later period in both upstream and downstream slope, with downstream slope more largely increased than upstream slope overall. The variation of earth pressure increased according to the increase of embankment heights, while the change largely showed in the upstream slope, it was slowly increased in the downstream slope. The settlements largely increased until 23 m as embankment heights increased, and showed very little settlement overall. Under a steady state and transient conditions, the seepage quantity per day and leakage quantity per 100 m of embankment against total storage were shown to be stable for piping. The hydraulic gradient at the core before and after raising embankments was greater than the limit hydraulic gradient, showing instability for piping. The safety factor of upstream and downstream slopes were shown to be very large at a steady state, while the upstream slopes greatly decreased at a transit conditions, downstream slopes did not show any significant changes. The horizontal settlements, the maximum shear strain and stress are especially distributed at the connecting portion of the existing reservoir and the new extension of backside. Accordingly, the backside extension method should be designed and reinforced differently from the cases of other types reservoirs.

Numerical investigation of responses of a piled raft to twin excavations: Role of sand density

  • Karira, Hemu;Kumar, Aneel;Ali, Tauha Hussain;Mangnejo, Dildar Ali;Yaun, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2022
  • In densely built areas, the development of underground transportation systems often involves twin excavations, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during excavation, it is vital to investigate the piled raft responses to subsequent excavation after the first tunnel in a twin-excavation system. The effects of deep excavations on existing piled foundations have been extensively investigated, but the influence of twin excavations on a piled raft is seldom reported in the literature. In this study, three-dimensional numerical analyses were carried out to investigate the influence of sand density on an existing piled raft (with a working load on top of the raft) due to twin excavations. A wide range of relative density (Dr) from loosest (30%), loose to medium (50% and 70%), and densest (90%) were selected to investigate the effects on settlement and load transfer mechanism of the piled raft during twin excavations. An advanced hypoplastic sand model (which can capture small-strain stiffness and stress-state dependent dilatancy of sand) was adopted. The model parameters are calibrated against centrifuge test results in sand reported in the literature. From the computed results, it is found that twin excavations in loose sand (Dr=30%) caused the most significant settlement. This is because of the higher stiffness of denser sand (Dr=90%) than that of loose sand. In contrast, a much larger tilting (maximum magnitude=0.18%) was computed in dense sand than in loose sand after the completion of the first excavation. As far as the load transfer mechanism along the piles is concerned, an upward load transfer to mobilize shaft resistance is observed in loose sand. On the contrary, a downward load transfer is observed in dense sand.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.