• Title/Summary/Keyword: maximum power

Search Result 6,047, Processing Time 0.053 seconds

Maximum Power Point Tracking Control of Photovoltaic Array Using Fuzzy control (퍼지제어에 의한 태양전지의 최대출력점 추적제어)

  • Kim, Jong-Su;Kim, Dae-Gwun;Kim, Sung-Nam;Lee, Seung-hwan;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2262-2264
    • /
    • 1997
  • In this paper, Maximum Power Point Tracking Method using Fuzzy controller is proposed to improve energy conversion efficiency. The solar cell has an optimum operating point to be able to get maximum power. To obtain maximum power from photovoltatic any, photovoltatic power system usually requires maximum power point tracking controller. The output characteristics of solar cell are nonlinear. To obtain maximum power from photsvoltatic array, the fuzzy controller only uses the output power. Therefore this control method is easy to implement to real system.

  • PDF

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Enhanced Global Maximum Power Point Tracking Method for a Photovoltaic System (태양광 발전 시스템의 향상된 전역 최대 발전전력 추종 기법)

  • Jang, Yohan;Bae, Sungwoo;Choung, Seunghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.200-205
    • /
    • 2022
  • This paper presents an improved maximum power point tracking method that can fast track the global maximum power point (GMPP) for a photovoltaic system under partial shading conditions. The proposed method combines the advantages of the maximum power trapezium (MPT) method and the search-skip-judge method to minimize the tracking voltage intervals. Thus, the proposed method can quickly track the GMPP by skipping unnecessary tracking voltage intervals. The superiority of the proposed method is verified through simulation results in the MATLAB/Simulink and experimental real-time operation results with the hardware-in-the-loop simulation. The simulation and experimental results demonstrated that the proposed method has a faster tracking time than the MPT method under various partial shading conditions.

An Improved Global Maximum Power Point Tracking Scheme under Partial Shading Conditions

  • Kim, Rae-Young;Kim, Jun-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.65-68
    • /
    • 2013
  • A photovoltaic array exhibits several local and single global maximum power points under partial shading conditions. To track the global maximum power point precisely, a novel global maximum power point tracking scheme is proposed in this paper. In the proposed scheme, robustness of the tracking performance has been improved by enhancing searching profile. In addition, the paper addresses the tracking failure condition, and provides the experimental verification with several simulation and experimental results.

A Study on the New Maximum Power Point Tracking and Current Ripple Reduction of Solar Cell for the Grid-connected PV Inverter (계통연계형 태양광 인버터의 새로운 최대 전력점 추종과 태양전지의 전류리플 감소에 관한 연구)

  • Hwang, Uiseon;Kang, Moonsung;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1187-1195
    • /
    • 2013
  • Photovoltaic inverters should always track the maximum power of solar cell arrays in operation. Also, they should be irrespective of the maximum power point voltage of a wide range of solar cells in tracking the maximum power point. If the current ripple of solar cells occurs, the function of maximum power point tracking drops, and normal tracking is difficult when solar radiation or the maximum power point changes. To solve this problem, this paper proposed a new maximum power point tracking algorithm with high efficiency and an algorithm to reduce the current ripple of solar cells. According to the results from the test on 4KW grid-connected PV inverter, the efficiency of maximum power point tracking and inverter output and the total harmonic distortion of inverter output current showed 99.97%, 97.5% and 1.05% respectively. So, the inverter showed excellent performance, and made possible stable maximum power point tracking operation when the solar radiation rapidly changed from 100% to 10% and from 10% to 100% for 0.5 seconds.

Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature (건구온파를 오인한 장기최대전력수요예측에 관한 연구)

  • 고희석;정재길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.10
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF

Variable Step-Size MPPT Control based on Fuzzy Logic for a Small Wind Power System (소형풍력발전시스템을 위한 퍼지로직 기반의 가변 스텝 사이즈 MPPT 제어)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2012
  • This paper proposes the fuzzy logic based variable step-size MPPT (Maximum Power Point Tracking) method for the stability at the steady state and the improvement of the transient response in the wind power system. If the change value of duty ratio is set on stability of the steady state, MPPT control traces to maximum power point slowly. And if the change value is set on improvement of the transient response, the system output oscillates at the maximum power point. By adjusting the step size with fuzzy logic, it can be improved the MPPT response speed and stability at steady state when MPPT control is performed to track the maximum power point. The effectiveness of the proposed method has been verified by simulations and experimental results.

Power Change According to the Angle of Solar Incidence (태양 입사각에 따른 전력 변화)

  • Mi-Yong Hwang;NguYen Vanhung;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.261-265
    • /
    • 2023
  • In this paper, we analyzed the transformation of the power following by the angle of incidence of the solar, the angle of photovoltaic module and artificial solar changed from 30° to 90° and synchronously changed the distance from 0.1 m to 0.5 m. Setting the distance between the artificial solar and the luminometer from 0.1 m to 0.5 m and set the angles to 90°, 60°, 45°, and 30°, the angle was 90° and when the distance was 0.1 m, the maximum Illuminance was 19,580 lux, the light could be obtained more. If the angle of incidence between the Artificial solar and the photovoltaic module was 90° and the variable resistance was 1,000 Ω at a distance of 0.4 m, the maximum power reached 0.82 W. Provided that the angle of incidence between the artificial solar and the photovoltaic module was 90° and the distance was 0.2 m since the variable resistance had the maximum power of 500 Ω, the maximum power was 0.78 W. At 1,000 Ω, the maximum power is 0.80 W so the maximum power at the variable resistance 1,000 Ω could obtain higher power than the variable resistance 500 Ω. The variable resistance was 1,000 Ω and the angle of incidence between the Artificial solar and the photovoltaic module was 90° at a distance of 0.4 m, and the maximum power reached 0.82 W. The angle was 60° at 0.3 m and 0.4 m the maximum power reached 0.10 W. The angle was 45° at 0.2 m maximum power reached 0.020 W, the angle was 30° at 0.4 m, and the maximum power reached 0.004 W. In four results about maximum power depending on the angle of incidence between the artificial solar and the photovoltaic module, the luminous efficiency and maximum power can be got the best at an angle of 90°.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

A Low Cost Maximum Power Point Tracking Technique for the Solar Charger

  • Nguyen, Thanh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.5-6
    • /
    • 2012
  • In this paper, a simplified maximum power point tracking technique for the solar charger is presented. Main advantages of the proposed charger include low cost and optimized charge time. The maximum power point tracking method is used to deliver the maximum power from PV array to the battery thereby reducing the charge time. Moreover, the proposed technique which tracks the maximum power point by adjusting output current helps reduce the quantity of required number of sensors for the charger. The experimental protype was implemented by using an 80W PV array, a buck converter and a digital signal processor to verify the feasibility of the proposed method.

  • PDF