• 제목/요약/키워드: maximum of a polynomial

검색결과 228건 처리시간 0.024초

융해실험에 의한 얼음과 융해수의 안정동위원소분화에 관한 연구 (A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment)

  • 이정훈;함지영;허순도
    • Ocean and Polar Research
    • /
    • 제37권4호
    • /
    • pp.327-332
    • /
    • 2015
  • Isotopic compositions of ice and meltwater play a very crucial role in paleoclimate studies based on ice cores and water resources research conducted in alpine hydrogeology. Better understanding of variations in the stable isotopic compositions of water is required since changes from ice to liquid water are gaining more attention due to recent climate change. In this work, a melting experiment was designed and conducted to investigate how the isotopic compositions of ice vary with time by heat sources, such as solar radiation. We conducted the melting experiment for 22 hours. The discharge rate rose to a maximum value after 258 minutes and gradually declined because we fixed the heat source. The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The linear relationship between oxygen and hydrogen has a slope of 6.8, which is less than that of the Global Meteoric Water Line (8) and higher than a theoretical value (6.3). The deuterium excess decreased when ${\delta}D$ or ${\delta}^{18}O$ increases or vise versa since the slope of the relationship for ice-liquid exchange is less than 8. These findings and the apparatus of the melting experiments will make a helpful contribution to the studies of stable isotopes and the melting process in temperate and polar regions.

반응표면법을 사용한 고 중량물 낙하시험기의 충격에너지 흡수량 예측 연구 (Prediction of Impact Energy Absorption in a High Weight Drop Tester by Response Surface Methodology)

  • 강훈;장진석;김다혜;강지헌;유완석;이재욱
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.44-51
    • /
    • 2016
  • This paper presents the characteristics of the energy absorption in an expansion tube type impact absorber that is applied to a high weight drop tester and the use of a response surface methodology to predict the impact energy absorption. In order to identify the characteristics of the energy absorption, a set of finite element analysis was conducted with Abaqus Explicit. Moreover, the ISCD-II sampling method and a first order polynomial were used to build a response surface. As a result, we demonstrated that the impact energy could be controlled by four main design variables, namely an expansion pipe's thickness, inner radius, pressing die's expansion angle and expansion ratio. Additionally, we observed the relationship between the four main design variables and the impact energy absorbing time, displacement, and maximum impact force.

직교다항식을 이용한 자동차 압축기용 가변 사판의 구조최적설계 (Structural Optimization of Variable Swash Plate for Automotive Compressor Using Orthogonal Polynomials)

  • 백석흠;김현성;한동섭
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1273-1279
    • /
    • 2011
  • 자동차 압축기는 연비 개선효과를 위해 가변 사판형 압축기를 사용한다. 가변 사판의 회전 토크와 피스톤에 작용하는 압력은 사판의 형상과 변형에 중요한 영향을 미친다. 본 논문은 Chebyshev 직교다항식과 최적화 기법을 이용하여 가변 사판의 최적 형상을 결정하였다. 사판의 설계 요구사항은 정상 운전상태에서 최대 응력과 변형을 최소화하면서 체적을 감소시키는 것이다. 직교배열표, 분산분석과 반응표면최적화 방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 사판의 유의한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

On the NiTi wires in dampers for stayed cables

  • Torra, Vicenc;Carreras, Guillem;Casciati, Sara;Terriault, Patrick
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.353-374
    • /
    • 2014
  • Recent studies were dedicated to the realization of measurements on stay-cable samples of different geometry and static conditions as available at several facilities. The elaboration of the acquired data showed a a satisfactory efficacy of the dampers made of NiTi wires in smoothing the cable oscillations. A further attempt to investigate the applicability of the achieved results beyond the specific case-studies represented by the tested cable-stayed samples is herein pursued. Comparative studies are carried out by varying the diameter of the NiTi wire so that similar measurements can be taken also from laboratory steel cables of reduced size. Details of the preparation of the Ni-Ti wires are discussed with particular attention being paid to the suppression of the creep phenomenon. The resulting shape of the hysteretic cycle differs according to the wire diameter, which affects the order of the fitting polynomial to be used when trying to retrieve the experimental results by numerical analyses. For a NiTi wire of given diameter, an estimate of the amount of dissipated energy per cycle is given at low levels of maximum strain, which correspond to a fatigue fracture life of the order of millions of cycles. The dissipative capability is affected by both the temperature and the cycling frequency at which the tests are performed. Such effects are quantified and an ageing process is proposed in order to extend the working temperature range of the damper to cold weathers typical of the winter season in Northern Europe and Canada. A procedure for the simulation of the shape memory alloy behavior in lengthy cables by finite element analysis is eventually outlined.

새로운 유한체 나눗셈기를 이용한 타원곡선암호(ECC) 스칼라 곱셈기의 설계 (Design of ECC Scalar Multiplier based on a new Finite Field Division Algorithm)

  • 김의석;정용진
    • 한국통신학회논문지
    • /
    • 제29권5C호
    • /
    • pp.726-736
    • /
    • 2004
  • 본 논문에서는 타원곡선 암호 시스템을 위한 스칼라 곱셈기를 유한체 GF(2$^{l63}$)상에서 구현하였다. 스칼라 곱셈기는 stand basis를 기반으로 비트-시리얼 곱셈기와 나눗셈기로 구성되어 있으며 이 가운데 가장 많은 시간을 필요로 하는 나눗셈의 효율적인 연산을 위해 확장 유클리드 알고리즘 기반의 새로운 나눗셈 알고리즘을 제안하였다. 기존의 나눗셈기들이 가변적인 데이터 종속성으로 인해 제어 모듈이 복잡해지며 처리 속도가 느린 것에 비해 새로이 제안하는 나눗셈 알고리즘은 입력신호의 크기에 독접 적인 2-bit의 제어 신호만을 필요로 하기 때문에 기존의 나눗셈기에 비하여 하드웨어 사이즈 및 처리 속도면에서 유리하다. 또한 제안하는 나눗셈기의 연산 모듈은 규칙적인 구조를 가지고 있어 입력 신호의 크기에 따라 확장이 용이하다. 새로운 스칼라 곱셈기는 삼성전자 0.18 um CMOS 공정으로 합성하였을 경우 60,000게이트의 하드웨어 사이즈를 가지며 최대 250MHz까지 동작이 가능하다. 이 때 데이터 처리속도는 148kbps로 163-bit 프레임당 1.1㎳ 걸린다. 이러한 성능은 디지털 서명, 암호화 및 복호화 그리고 키 교환 등에 효율적으로 사용될 수 있을 것으로 여겨진다.다.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구 (The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • 생물환경조절학회지
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

소스 종류를 달리한 햄 주먹밥에서의 Staphylococcus aureus 성장예측모델 개발 및 위해평가 (Development of a Predictive Model and Risk Assessment for the Growth of Staphylococcus aureus in Ham Rice Balls Mixed with Different Sauces)

  • 오수진;여성순;김미숙
    • 대한영양사협회학술지
    • /
    • 제25권1호
    • /
    • pp.30-43
    • /
    • 2019
  • This study compared the predictive models for the growth kinetics of Staphylococcus aureus in ham rice balls. In addition, a semi-quantitative risk assessment of S. aureus on ham rice balls was conducted using FDA-iRISK 4.0. The rice was rounded with chopped ham, which was mixed with mayonnaise (SHM), soy sauce (SHS), or gochujang (SHG), and was contaminated artificially with approximately $2.5{\log}\;CFU{\cdot}g^{-1}$ of S. aureus. The inoculated rice balls were then stored at $7^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$, and the number of viable S. aureus was counted. The lag phases duration (LPD) and maximum specific growth rate (SGR) were calculated using a Baranyi model as a primary model. The growth parameters were analyzed using the polynomial equation as a function of temperature. The LPD values of S. aureus decreased with increasing temperature in SHS and SHG. On the other hand, those in SHM did not show any trend with increasing temperature. The SGR positively correlated with temperature. Equations for LPD and SGR were developed and validated using $R^2$ values, which ranged from 0.9929 to 0.9999. In addition, the total DALYs (disability adjusted life years) per year in the ham rice balls with soy sauce and gochujang was greater than mayonnaise. These results could be used to calculate the expected number of illnesses, and set the hazard management method taking the DALY value for public health into account.

Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete

  • Muhammad, Akbar;Zahoor, Hussain;Pan, Huali;Muhammad, Imran;Blessen Skariah, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.275-287
    • /
    • 2023
  • The use of environmental-friendly building materials is becoming increasingly popular worldwide. Compared to the normal concrete, rubber-based concrete is considered more durable, environmentally friendly, socially and economically viable. In this investigation, M20 grade concrete was designed and the fine aggregates were replaced with crumb rubber of two different micron sizes (0.221 mm and 0.350 mm). Fly ash (FA) and silica fume (SF) replaces the binder as supplementary cementitious materials at a rate of 0, 5, 10, 15, and 20% by weight. The mechanical properties of concrete including compressive strength, tensile, and flexural strength were determined. The polynomial work expectation validates the response surface approach (RSM) concept for optimizing SF and FA substitution. The maximum compressive strength (22.53 MPa) can be observed for the concrete containing 10% crumb rubber, 15% fly ash and 15% silica fume. The reduced unit weight of the rubberized concrete may be attributed to the lower specific gravity of the rubber particles. Two-way ANOVA with a significance criterion of less than 0.001 has been utilized with modest residual error from the lack of fit and the pure error. The predictive model accurately forecasts the variable-response relationship. Since, the crumb rubber is obtained from wasted tires incorporating FA and SF as a cementitious ingredient, it helps to significantly improve mechanical properties of concrete and reduce environmental degradation.