• Title/Summary/Keyword: maximum of a polynomial

Search Result 227, Processing Time 0.022 seconds

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Design and Analysis of Pseudorandom Number Generators Based on Programmable Maximum Length CA (프로그램 가능 최대길이 CA기반 의사난수열 생성기의 설계와 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2020
  • PRNGs(Pseudorandom number generators) are essential for generating encryption keys for to secure online communication. A bitstream generated by the PRNG must be generated at high speed to encrypt the big data effectively in a symmetric key cryptosystem and should ensure the randomness of the level to pass through the several statistical tests. CA(Cellular Automata) based PRNGs are known to be easy to implement in hardware and to have better randomness than LFSR based PRNGs. In this paper, we design PRNGs based on PMLCA(Programable Maximum Length CA) that can generate effective key sequences in symmetric key cryptosystem. The proposed PRNGs generate bit streams through nonlinear control method. First, we design a PRNG based on an (m,n)-cell PMLCA ℙ with a single complement vector that produces linear sequences with the long period and analyze the period and the generating polynomial of ℙ. Next, we design an (m,n)-cell PC-MLCA based PRNG with two complement vectors that have the same period as ℙ and generate nonlinear sequences, and analyze the location of outputting the nonlinear sequence.

Disease Recognition on Medical Images Using Neural Network (신경회로망에 의한 의료영상 질환인식)

  • Lee, Jun-Haeng;Lee, Heung-Man;Kim, Tae-Sik;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

  • PDF

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Approximate Analytical Formula for Minimum Principal Stress Satisfying the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식을 만족하는 최소주응력의 해석적 근사식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.480-493
    • /
    • 2021
  • Since the generalized Hoek-Brown criterion (GHB) provides an efficient way of identifying its strength parameter values with the consideration of in-situ rock mass condition via Geological Strength Index (GSI), this criterion is recognized as one of the standard rock mass failure criteria in rock mechanics community. However, the nonlinear form of the GHB criterion makes its mathematical treatment inconvenient and limits the scope of its application. As an effort to overcome this disadvantage of the GHB criterion, the explicit approximate analytical equations for the minimum principal stress, which is associated with the maximum principal stress at failure, are formulated based on the Taylor polynomial approximation of the original GHB criterion. The accuracy of the derived approximate formula for the minimum principal stress is verified by comparing the resulting approximate minimum principal stress with the numerically calculated exact values. To provide an application example of the approximate formulation, the equivalent friction angle and cohesion for the expected plastic zone around a circular tunnel in a GHB rock mass are calculated by incorporating the formula for the approximate minimum principal stress. It is found that the simultaneous consideration of the values of mi, GSI and far-field stress is important for the accurate calculation of equivalent Mohr-Coulomb parameter values of the plastic zone.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Path Algorithm for Maximum Tax-Relief in Maximum Profit Tax Problem of Multinational Corporation (다국적기업 최대이익 세금트리 문제의 최대 세금경감 경로 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • This paper suggests O(n2) polynomial time heuristic algorithm for corporate tax structure optimization problem that has been classified as NP-complete problem. The proposed algorithm constructs tax tree levels that the target holding company is located at root node of Level 1, and the tax code categories(Te) 1,4,3,2 are located in each level 2,3,4,5 sequentially. To find the maximum tax-relief path from source(S) to target(T), firstly we connect the minimum witholding tax rate minrw(u, v) arc of node u point of view for transfer the profit from u to v node. As a result we construct the spanning tree from all of the source nodes to a target node, and find the initial feasible solution. Nextly, we find the alternate path with minimum foreign tax rate minrfi(u, v) of v point of view. Finally we choose the minimum tax-relief path from of this two paths. The proposed heuristic algorithm performs better optimal results than linear programming and Tabu search method that is a kind of metaheuristic method.

Optimization Algorithm for k-opt Swap of Generalized Assignment Problem (일반화된 배정 문제의 k-opt 교환 최적화 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.151-158
    • /
    • 2023
  • The researchers entirely focused on meta-heuristic method for generalized assignment problem(GAP) that is known as NP-hard problem because of the optimal solution within polynomial time algorithm is unknown yet. On the other hand, this paper proposes a heuristic greedy algorithm with rules for finding solutions. Firstly, this paper reduces the weight matrix of original data to wij ≤ bi/l in order to n jobs(items) pack m machines(bins) with l = n/m. The maximum profit of each job was assigned to the machine for the reduced data. Secondly, the allocation was adjusted so that the sum of the weights assigned to each machine did not exceed the machine capacity. Finally, the k-opt swap optimization was performed to maximize the profit. The proposed algorithm is applied to 50 benchmarking data, and the best known solution for about 1/3 data is to solve the problem. The remaining 2/3 data showed comparable results to metaheuristic techniques. Therefore, the proposed algorithm shows the possibility that rules for finding solutions in polynomial time exist for GAP. Experiments demonstrate that it can be a P-problem from an NP-hard.

A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment (융해실험에 의한 얼음과 융해수의 안정동위원소분화에 관한 연구)

  • Lee, Jeonghoon;Ham, Ji-Young;Hur, Soon Do
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Isotopic compositions of ice and meltwater play a very crucial role in paleoclimate studies based on ice cores and water resources research conducted in alpine hydrogeology. Better understanding of variations in the stable isotopic compositions of water is required since changes from ice to liquid water are gaining more attention due to recent climate change. In this work, a melting experiment was designed and conducted to investigate how the isotopic compositions of ice vary with time by heat sources, such as solar radiation. We conducted the melting experiment for 22 hours. The discharge rate rose to a maximum value after 258 minutes and gradually declined because we fixed the heat source. The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The linear relationship between oxygen and hydrogen has a slope of 6.8, which is less than that of the Global Meteoric Water Line (8) and higher than a theoretical value (6.3). The deuterium excess decreased when ${\delta}D$ or ${\delta}^{18}O$ increases or vise versa since the slope of the relationship for ice-liquid exchange is less than 8. These findings and the apparatus of the melting experiments will make a helpful contribution to the studies of stable isotopes and the melting process in temperate and polar regions.