• Title/Summary/Keyword: maximum nitrogen removal

Search Result 133, Processing Time 0.025 seconds

A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor (Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구)

  • Seo Jong-Hwan;Lee Chul-Seung
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

Performance of Chlorella vulgaris for the Removal of Ammonia-Nitrogen from Wastewater

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.235-239
    • /
    • 2013
  • In the present investigation, the efficiency of Chlorella vulgaris (C. vulgaris) was evaluated for the removal of ammonia-nitrogen from wastewater. Eight different wastewater samples were prepared with varied amounts of $NH_4-N$ concentrations from 15.22 to 205.29 mg/L. Experiments were conducted at pH $7.5{\pm}0.3$, temperature $25^{\circ}C{\pm}1^{\circ}C$, light intensity $100{\mu}E/m^2/s$, and dark-light cycles of 8-16 hr continuously for 8 days. From the results, it was found that $NH_4-N$ was completely removed by C. vulgaris, when the initial concentration was between 5.22-25.24 mg/L. However, only 50% removal was obtained when the $NH_4-N$ concentration was 85.52 mg/L, which further decreased to less than 32% when the $NH_4-N$ concentration exceeded 105.43 mg/L. The further influence of nitrogen on chlorophyll was studied by various $NH_4-N$ concentrations. The maximal value of chlorophyll a (Chl a) content was found to be 19.21 mg/L for 65.79 mg/L $NH_4-N$ concentration, and the maximum specific $NH_4-N$ removal rate of 1.79 mg/mg Chl a/day was recorded at an $NH_4-N$ concentration of 85.52 mg/L. These findings demonstrate that C. vulgaris could potentially be employed for the removal of $NH_4-N$ from wastewater.

Removal of N and P by Intermittented Aeration Activated Sludge Process (간헐폭기식 활성슬러지 공법에 의한 질소, 인 제거)

  • 김동밀;이영신
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 1992
  • This study was made for enhanced removal of N and P by intermittented aeration Activated Sludge Process. Experiment were conducted to find the effects of aeration interval and nutrient removal efficiency. When applied aeration interval were 30~60 min, 2~4 h, 4~8 h, organic matter was not affected while phosphorous removal was aeration interval 30~60 min. Also, when applied mixing intensity were 15, 30, 45 and 60 rpm, organic matter was not affected while removal was maximum at 15 rpm. Total nitrogen and phosphorous removal were in the range of 76 and 85%. Density and MLSS of Sludge were in the range of 2.3~2.6 and 7198~7810 mg/l. Release of phosphorous from activated sludge under unaerobic condition was increased as pass time.

  • PDF

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

Evaluation of a moving bed biofilm reactor for simultaneous atrazine, carbon and nutrients removal from aquatic environments: Modeling and optimization

  • Derakhshan, Zahra;Ehrampoush, Mohammad Hassan;Mahvi, Amir Hossein;Dehghani, Mansooreh;Faramarzian, Mohammad;Ghaneian, Mohammad Taghi;Mokhtari, Mehdi;Ebrahimi, Ali Asghar;Fallahzadeh, Hossein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.219-230
    • /
    • 2018
  • The present study examined a moving bed biofilm reactor (MBBR) bioreactor on a laboratory scale for simultaneous removal of atrazine, organic carbon, and nutrients from wastewater. The maximum removal efficiency of atrazine, chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN) were 83.57%, 90.36%, 90.74% and 87.93 respectively. Increasing salinity up to 40 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the MBBR reactor.Results showed that MBBR is so suitable process for efficiently biodegrading of atrazine and nitrogen removal process was based on the simultaneous nitrification-denitrification (SND) process.

Ozone Generation and NO Gas Removal Characteristics a Hybrid Discharge Type Ozonizer (복합방전형 오존발생기의 오존생성 및 NO 가스 제거특성)

  • Song, Hyun-Jig;Lee, Sang-Seock;Shin, Yong-Chul;Kim, Min-Huei;Park, Chan-Gyu;Lee, Kwang-Sik;Im, Chang-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.278-280
    • /
    • 2006
  • A hybrid discharge type ozonizer, which is superposed silent and surface discharges, has been designed and manufactured to apply for Nitrogen Oxides(NO) gas removal. The ozonizer consists of three electrodes, and is classified three types of ozonizer by changing applied voltage. Investigation was carried out variance with the flow rate of supplied oxygen gas, discharge power and the sorts of superposed discharge type ozonizer. Moreover, $NO(1200[ppm])/N_2$ gas removal investigation was also conducted to apply for environment improvement field. Two kinds of NO gas removal investigations were conducted. It distinguishes the investigations into NO gas reaction method. According to these studies, maximum removal rate of 100[%] in NO gas was obtained, and 8334[ppm] and 3249[mg/h] of maximum ozone concentration and generation were also obtained respectively.

  • PDF

Experimental Study on Capacity Variation of Paving Materials with TiO2 in Wet Condition (광촉매 이산화티타늄(TiO2)을 혼합한 도로 포장재의 습윤 조건에서의 성능 변화에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • This study aims to present the practical Nitrogen monoxide (NO) removal capacity of cement mortar with Titanium dioxide ($TiO_2$) which is one of the paving materials by considering the environment of pavement in urban areas. NO removal capacity test under designated conditions of humidity of inflow gas and the test with variation of the degree of saturation of specimen were conducted. In the test for humidity, dry specimen is subject to the test and NO removal ratio was observed. Humidity-NO removal ratio curve is a log normal distribution in shape, and the maximum NO removal ratio appears at specific humidity. NO removal capacity test relying on the degree of saturation was carried out with wet specimen to reflect the unsaturated pavement by rainfall and domestic sewage. Wet specimen presents less NO removal capacity than dry specimen and the recovering evolution of NO removal capacity follows evaporation. Moreover, $TiO_2$ under the specific depth of specimen hardly contributes to NO removal capacity.

Bidirectional pulse generator for removal of flue gas (배기가스 처리용 양방향 펄스 전원)

  • 박정호;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.233-236
    • /
    • 1997
  • An investigation has been made of the various plasma chemistry reactions that occur in the corona discharge of an electrostatic precipitator operating in a typical flue gas. As the results of investigation, sulphur dioxide is removed principally by reactions with OH radicals to produce sulphuric acid, while nitrogen oxides are removed principally by reduction via the N radical to molecular nitrogen. If electrostatic precipitator\ulcorner used for flue gases are operated with positive voltages instead of negative dc voltages, there are significant reductions in the emission of the undesirable gases SO$_2$, NO, and NO$_2$. Thus, in this paper we design the bidirectional pulse generator for removal of flue gas, where the pulse width is more than 50[nsec] and the maximum output voltage is more than 100[kVl.

  • PDF

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.