• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.029 seconds

Analysis of behaviour of steel beams with web openings at elevated temperatures

  • Yin, Y.Z.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.15-31
    • /
    • 2006
  • Beams with web openings are an attractive system for multi-storey buildings where it is always desirable to have long spans. The openings in the web of steel beams enable building services to be integrated within the constructional depth of a floor, thus reducing the total floor depth. At the same time, the increased beam depth can give high bending moment capacity, thus allowing long spans. However, almost all of the research studies on web openings have been concentrated on beam behaviour at ambient temperature. In this paper, a preliminary numerical analysis using ABAQUS is conducted to develop a general understanding of the effect of the presence of web opening on the behaviour of steel beams at elevated temperatures. It is concluded that the presence of web openings will have substantial influence on the failure temperatures of axially unrestrained beams and the opening size at the critical position in the beam is the most important factor. For axially restrained beams, the effect of web openings on the beam's large deflection behaviour and catenary force is smaller and it is the maximum opening size that will affect the beam's response at very high temperatures. However, it is possible that catenary action develops in beams with web openings at temperatures much lower than the failure temperatures of the same beam without axial restraint that are often used as the basis of current design.

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

Comparison of Lifting and Lowering Activity based on Biomechanical, Physiological, Psychophysical Criteria (들기 작업과 내리기 작업의 생체역학적, 생리학적, 정신물리학적 기준치에 의한 비교)

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.145-153
    • /
    • 2010
  • Activity of lifting has been a major issue in many research area related in manual materials handling tasks. However, the opposite activity of lifting, lowering, has received much less attention. It is known that 52% of all box-handling tasks were lowering in nature. The difference in stress between lifting and lowering activity is not well understood. A simple assumption that these two activities are very similar has been established and widely used. However, this simple assumption may be questionable. The objective of this study was to compare a lifting activity and a lowering activity based on the three different ergonomic approaches; (1) biomechanical, (2) physiological, (3) psychophysical approach. It was found that the stress of lowering activity was from 65% to 93%, from 87% to 97%, and from 87% to 96% according to the biomechanical, physiological, and psychophysical point of view, respectively. It is concluded from the result of this study that the stress of lowering activity is lower than that of the lifting activity. The maximum compressive force on the lumbro-sacral joint (L5/S1) was 158% and 108% respectively, for lifting and lowering activity of which the work load is the 58% of Action Limit. It is suggested that the NIOSH AL and RWL and biomechanical criteria should be reconsidered especially for the low frequency of lifting activities.

Upper Limbs Related Muscle Strength and Fatigue During the Wrench Job for Korean Young Aged (렌치 작업에서의 청년층의 상지근력 및 근피로도에 관한 연구)

  • Yoon, Hoon-Yong;Kim, Eun-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.88-97
    • /
    • 2012
  • The muscle strengths in various postures are still used in the workplace, although mechanization and automation have been continuously accomplished. The aim of this study is to measure the maximum muscle strength and analyze the muscle fatigue during the various wrench jobs which are one of the upper limbs related works. Four hundreds and eighty five college students (243 males and 242 females) participated in this study. Twelve muscle strengths which are using for pulling, pushing, lifting and lowering the wrench with various postures are measured. For every moment, the muscle strengths for both hands were measured. In each measurement, five seconds averaged value and peak value were collected. The averaged value of preferred hand and non-preferred hand was compared. Also, the averaged value of opposite movement was compared through t-test. The fatigue of agonist for each movement was analyzed using EMG analysis. The result of this study can provide some basic information not only in designing the tools in work but also in selection, training and management of workers.

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Experimental and numerical evaluation of rigid connection with reduced depth section

  • Garoosi, Allah Reza Moradi;Roudsari, Mehrzad Tahamouli;Hashemi, Behrokh Hosseini
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.863-875
    • /
    • 2020
  • After medium or strong earthquakes, damage in the reduced portion of RBS connections occurs due to plastic deformations. The purpose of this paper is to numerically and experimentally investigate the reduced depth section connection as a replaceable fuse. In this regard, three commonly used rigid connections with RBS, a replaceable fuse with RBS, and a replaceable fuse with Reduced Depth Section (RDS-F) were evaluated. All specimens were subjected to quasi-static cyclic load until failure. Although the final strength of the RDS-F is lower than that of the other two, laboratory results showed that it had the maximum ductility among the three samples. The numerical models of all three laboratory samples were constructed in ABAQUS, and the results were verified with great accuracy. The results of more than 28 numerical analyses showed that the RDS-F sample is more ductile than the other specimens. Moreover, the thickness of the web and the plastic section modulus increasing, the final strength would be equal to the other specimens. Therefore, the modified RDS-F with replaceability after an earthquake can be a better alternative for RBS connections.

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Thermomechanical and Flexural Behavior of WB-PBGA Package Using $Moir{\acute{e}}$ Interferometry (모아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Joo, Jin-Won;Lee, Chang-Hee;Han, Bong-Tae;Cho, Seung-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.90-95
    • /
    • 2001
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) are characterized by high sensitive $moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed at several various bending loads and temperature steps. At the temperature higher that $100^{\circ}C$, the inelastic deformation in solder balls became more dominant. As a result the bending of the molding compound decreased while temperature increased. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder. The results also show that $moir{\acute{e}}$ interferometry is a powerful and effective tool in experimental studies of electronic packaging.

  • PDF

An Analysis of Wind Force Coefficient Distributions for Optimum Design of Multi-Span Arched Greenhouses (아치형 연동온실의 최적설계를 위한 풍력계수분포도의 분석)

  • 이현우;이석진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.145-151
    • /
    • 1996
  • Wind force coefficients of multi-span arched greenhouses with respect to wind direction of $0^{\circ}$ and $30^{\circ}$ were estimated to give more reasonable coefficient. The conventional and subdivided division types of wind force coefficient distribution diagrams were constructed by using the wind tunnel experimental data. Bending moments on the greenhouses were determined through structural analysis using obtained wind force coefficients, and were analyzed. Because actual wind pressure values on a face of greenhouse varied with locations, the more divisions of wind force coefficient distribution were subdivided, the better distribution type was coincided with actual state. In order to calculate the more accurate section force occurred on the arched greenhouse by the wind loads, it was recommendable that the wind force coefficient distribution should take more subdivision type. The maximum bending moment at the multi-span greenhouse frame at wind direction of $30^{\circ}$ was greater than that at O。, therefore the wind force coefficient at inclined wind direction to the wall was needed to be considered for the multi-span greenhouse structural design.

  • PDF