• Title/Summary/Keyword: maximum moment

Search Result 908, Processing Time 0.029 seconds

The Analysis of Pile Bridge Abutments on Soft Clay for Loading from Lateral Soil Movement (연약지반상에 측방유동을 받는 교대말뚝기초의 거동분석)

  • Lee, Song;Kang, Dae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • Pile Bridge Abutments constructed on a soft base are affected by a lateral flow. Laterl flow pressure acting on Pile is very difficult to calculate because of, interation of ground and Pile. So, it is different to estimate displacement of Pile Bridge Abutments. This paper studied about possibility of the displacement estimation of Pile Bridge Abutments by using the equivalent sheet pile wall theory that was Randolph proposed in 1981. Analysis program through using the SAGE CRISP that is FEM program. Analysis data used Centrifuge test results of Springman(1991), Bransby(1997) and Ellis(1997)'s paper. In conclusion, maxium displacement that is carried out by centrifuge test and numerical analysis has occured at the head of pile, as well as Maximum displacement of pile is closely similar. But the moment acting on pile of numerical analysis is under estimated compare to the centrifuge test. Through the comparative study, it is found that displacement estimation by equivalent sheet pile wall is in relatively good agreement with the results of centrifuge test.

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.795-798
    • /
    • 2016
  • Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

Shear Strengthening of Pre-loaded RC Beams Retrofitted with CFS & Steel Plate (재하상태에 따른 탄소섬유쉬트 및 강판의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.775-780
    • /
    • 2000
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS) & steel plate. Main test parameters were the magnitude of pre-loading at the time of the retrofit, the strengthening methods of carbon fiber sheet and aid ratio. A series of seventeen specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, load-strain relationship and failure mode. As a result, using the steel plate can increase the capacity of not only shear but also bending moment.

  • PDF

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

Field Measurements of Soil-Steel Bridge (파형강판을 이용한 지중-강판 교량의 시공현장계측)

  • 이종구;김경석;이종화;조성민;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.331-338
    • /
    • 2001
  • The soil-steel bridges which were introduced in Korea recently are widely used instead of underpasses of highway or small bridges. This bridge is a kind of flexible buried conduit which sustain the applied load by the interaction with the backfill soil. The 6.25m din. round soil-steel bridge was instrumented so as to investigate the behavior of load sustenance, The axial forces and moments at the 7 locations around the metallic shell were calculated from the measurement of strains during backfilling. The maximum axial force and moment were compared with those of various design predictions. Finally, the stability of bridge was evaluated.

  • PDF

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.

Fracture Analysis of a Spindle in the X-Lift (X 리프트 스핀들의 파괴해석)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • One of the two spindles in the X-lift fractured suddenly during normal operation. The fracture occurred at the notch where the bending moment might be the maximum. Macrofractographic features associated with rotating-bending fatigue are evident on the fracture surface. The 3-D finite element analysis of the X-lift reveals that the spindle rotated under bending. The measured surface strain of the spindle varies cyclically as the spindle rotates. It supports that the spindle rotated under bending. The X-lift is not perfectly symmetrical with respect to both the horizontal and the vertical plane. The slightly unsymmetrical deformation can cause the bending of the spindle.

Assessment of nonlinear static and incremental dynamic analyses for RC structures

  • Oncu, Mehmet Emin;Yon, Merve Sahin
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1195-1211
    • /
    • 2016
  • In this study, seismic behaviour of reinforced concrete buildings using the pushover and incremental dynamic analysis method was investigated. A numerical study was performed for a reinforced concrete frame building. Pushover analysis according to uniform and triangular load shapes and incremental dynamic analyses were performed for selected building. For the nonlinear analysis, three ground motion records were selected to ensure compatibility with the design spectrum defined in the Turkish Seismic Code. The maximum response, dynamic pushover curve, capacity curves, interstorey drifts and moment rotation curves for various element ends of the selected building were obtained. Results were compared each other and good correlation was obtained between the dynamic analyses envelope with static pushover curves for the building.

Evaluation of wind power potential for selecting suitable wind turbine

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.311-319
    • /
    • 2020
  • India is a developing nation and heavily spends on the development of wind power plants to meet the national energy demand. The objective of this paper is to investigate wind power potential of Ennore site using wind data collected over a period of two years by three parameter Weibull distribution. The Weibull parameters are estimated using maximum likelihood, least square method and moment method and the accuracy is determined using R2 and root mean square error values. The site specific capacity factor is calculated by the mathematical model developed by three parameter Weibull distribution at different hub heights above the ground level. At last, the wind energy economic analysis is carried out using capacity factor at 30 m, 40 m and 50 m height for different wind turbine models. The analysis showed that the site has potential to install utility wind turbines to generate energy at the lowest cost per kilowatt-hour at height of 50 m. This research provides information of wind characteristics of potential sites and helps in selecting suitable wind turbine.

Structural Analysis and Evaluation Technologies of Automotive Seat Frames (자동차 시트 프레임의 강도설계 및 평가기술 개발)

  • Woo, C.S.;Koo, J.S.;Cho, H.J.;Kim, H.S.;Jeong, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.806-811
    • /
    • 2001
  • To develop design and evaluation technologies of automotive seat frames, structural analysis and fatigue tests have been performed. Under the back moment loading condition, the numerical simulation yielded the maximum stress over the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached on some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, fatigue tests have been performed using the side frame bracket specimens made of various welding types to estimate their durabilities. From the fatigue test results and the analysis ones, it was recommended that the welding position of the bracket should be moved upward.

  • PDF