• Title/Summary/Keyword: maximum modulus

Search Result 558, Processing Time 0.029 seconds

Development of a Three Dimensional Modulus of Rupture Test (순수 등방성 휨인장강도 시험법 개발)

  • Zi, Goang-Seup;Oh, Hong-Seub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.399-402
    • /
    • 2007
  • The classical two dimensional modulus of rupture test was generalized to three dimensions. Using this new method, the biaxial tensile strength can be measured with only one actuator. A circular plate is used in this method unlike a prismatic beam in the classical modulus of rupture test. The stress field in this specimen is isotropic and uniform in a plane paralle1 to the bottom surface of the specimen. The relation between the applied load and the maximum stress is derived analytical1y using Timoshenko's solution. A set of experimental data is presented.

  • PDF

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

Recursive Probability Estimation of Decision Feedback Equalizers based on Constant Modulus Errors (상수 모듈러스 오차의 반복적 확률추정에 기반한 결정궤환 등화)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2172-2177
    • /
    • 2015
  • The DF-MZEP-CME (decision feedback - maximum zero-error probability for constant modulus errors) algorithm that makes the probability for constant modulus error (CME) close to zero and employs decision feedback (DF) structures shows more improved performance in channel distortion compensation. However the DF-MZEP-CME algorithm has a computational complexity proportional to a sample size for probability estimation and this property plays a role of an obstacle in practical implementation. In this paper, the gradient of DF-MZEP-CME is proposed to be estimated recursively and shown to solve the computational problem by making the algorithm independent of the sample size. For a sample size N, the conventional method has 10N multiplications but the proposed has only 20 regardless of N. Also the recursive gradient estimation for weight update is kept in continuity from the initial state to the steady state without any error propagation.

A Performance Analysis of Hybrid-DSE-MMA Adaptive Equalization Algorithm based on Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 Hybrid-DSE-MMA 적응 등화 알고리즘의 성능 분석)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.75-80
    • /
    • 2021
  • This paper relates with the Hybrid-DSE-MMA (Hybrid-Dithered Signed Error-MMA) that is possible to improving the equalization performance by using the adaptive modulus and adaptive stepsize in DSE-MMA adaptive equalizer. The DSE-MMA possible to improve the robustness performance to external noise of SE-MMA by using the sign after adding the dither signal for get the error signal in order to update the tap coefficient. But it has a drawback of performance degradation in convergence speed and residual isi by using the fixed modulus and fixed stepsize. In this paper, it was confirmed that this equalization performance degradation was improved by applying the adaptive modulus and stepsize in DSE-MMA propotional to the output power of equalizer by computer simulation. In order to compare the improved equalization performance to currently DSE-MMA, the recovered signal constellation that is the output of the equalizer, residual isi, Maximum Distortion, MSE and the SER were used as a performance index. As a result of computer simulation, the Hybrid-DSE-MMA improve the equalization performance in every index, but gives slower convergence speed compared to DSE-MMA.

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

A Study on the Mechanical Change of Emulsion-Treated Hair by Color

  • Ko, Hee-Ja;Park, Jang-Soon
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.127-133
    • /
    • 2022
  • With the increasing interest in the expression of individuality and appearance of modern people, it is time to conduct research and development of novel hair coloring from various angles. Therefore, taking into account the order of discoloration of hair pigments, we selected a creative and novel emulsion as a novel material for hair coloring, rather than a cosmetic material such as hot water extract using natural products dealt with in previous studies, commercially available hair manicure, and oxidation hair dye for hair. Thus, the change in tensile strength and elongation of hair samples by color was studied. As a result of the study, hair with green emulsion paint had a significantly higher maximum load, maximum stress, maximum elongation and breaking load, breaking stress, breaking elongation values are shown. Maximum in terms of modulus, green emulsion applied hair and the control group were higher in the 0-15s strain and 15-145s sections, respectively, and the tangential modulus value was much higher in the control group than the experimental group hairs in all the 0-145s sections. This study, which analyzes the dynamic changes of hair samples that extend the daily color gamut, will greatly contribute to the development of innovative hair coloring materials in the research and production of hair beauty works, and it is judged that it will also contribute to the development of the beauty industry.

The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions (임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석)

  • Jeung, Sin-Young;Kim, Chang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite (유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향)

  • Lee, Jung-Hui;Lee, Jeong-Gwon;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

Determination of Maximum Shear Modulus of Sandy Soil Using Pressuremeter Tests (프레셔미터 시험을 이용한 사질토 지반의 최대 전단탄성계수 결정)

  • Kwon, Hyung Min;Jang, Soon Ho;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.179-186
    • /
    • 2008
  • Pressuremeter test estimates the deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall. It is general to utilize the reloading curve for the estimation of deformational properties of soil because the initial loading curve can be affected by the disturbance caused by boring. On the other hand, the instrumental resolution or the variation of measured data makes it hard to estimate the maximum shear modulus from pressuremeter test results. This study suggested the methodology estimating the maximum shear modulus from pressuremeter test directly, based on the curve fitting of reloading curve. In addition, the difference was taken into account between the stress state around the probe in reloading and that of the in-situ state. Pressuremeter tests were conducted for 15 cases using a large calibration chamber, together with a number of reference tests. The maximum shear moduli taken from suggested method were compared with those from empirical correlation and bender element test.

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.