• 제목/요약/키워드: maximum loading

검색결과 1,533건 처리시간 0.023초

생물환원전극 미생물연료전지에서 외부저항 및 유입부하에 따른 유기물 및 질소 제거와 전기생산에 미치는 영향 (Effect of the Organic and Nitrogen Removal and Electricity Production on Changing the External Resistor and the Inflow Loading in the Biocathode Microbial Fuel Cell)

  • 김지연;김병군;김홍석;윤주환
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.556-562
    • /
    • 2015
  • In order to remove the organic substances and the nitrate-nitrogen contained in wastewater, some researchers have studied the simultaneous removal of organics and nitrogen by using different biocathode microbial fuel cells (MFCs). The operating conditions for removing the contaminants in the MFCs are the external resistances, HRTs, the concentration of the influent wastewater, and other factors. This study aimed to determine the effect of the external resistors and organic loading rates, from the changing HRT, on the removal of the organics and nitrogen and on the production of electric power using the Denitrification Biocathode - Microbial Fuel Cell (DNB-MFC). As regards the results of the study, the removal efficiencies of $SCOD_{Cr}$ did not show any difference, but the nitrate-nitrogen removal efficiencies were increased by decreasing the external resistance. The maximum denitrification rate achieved was $129.2{\pm}13.54g\;NO_3{^-}-N/m^3/d$ in the external resistance $1{\Omega}$, and the maximum power density was $3,279mW/m^3$ in $10{\Omega}$. When the DNB-MFC was operated with increasing influent organic and nitrate loading by reducing the HRTs, the $NO_3{^-}-N$ removal efficiencies were increased linearly, and the maximum nitrate removal rate was $1,586g\;NO^3{^-}-N/m^3/d$ at HRT 0.6 h.

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

포스트 텐션 공법으로 보강된 SC 합성보의 휨 거동 (Flexural Behavior of Steel-Concrete Composite Beams Strengthened by Post Tension Method)

  • 류수현;김희철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권3호
    • /
    • pp.186-195
    • /
    • 2010
  • 본 논문은 SC합성보에 정착구의 높이, 새들의 형태, 가력시점을 변수로 하여 비부착 포스트텐션 보강을 하고 휨실험을 통해 보강방법을 평가하여 적절한 보강방법을 제시하고자 하엿다. 실험결과 보강 전 SC합성보의 최대내력은 실험값/이론값이 0.97로 나타났으나 보강 후는 1.00~1.21로 나타나 보강효과를 확인할 수 있었다. 변위 및 변형률 분석결과 정착구의 높이 및 가력시점에 상관없이 보강 후 중립축에 정착구를 설치한 D120계열 실험체가 최대하중이후 급격한 하중저하 없이 변위가 지속적으로 증가하며 각 부분의 변형률도 비교적 적게 나타나는 안정적인 거동을 했다. 보강효과면에서 선 가력 후 보강한 SCR-UD120실험체가 보강 전 SC합성보에 비해 최대내력이 1.72배 증가하여 가장 우수한 것으로 나타났다.

반복하중시 철근콘크리트의 부착특성 (Bond Properties of Reinforced Concrete Subjected to Cyclic Loading)

  • 이웅세;이재열;김상준;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.617-620
    • /
    • 1999
  • The purpose of this study is to find the influence of interface and confinement on bond between reinforcing steel and concrete subjected to monotonic and cyclic loading. The key variables for the experimental program include rib height, rib spacing for reinforcing bars and confinement. From the results obtained in this study, the following main observations can be made for the bond properties. Bond strength increases when confinement increases under monotonic and cyclic loading. Bond stiffness and strength drop remarkably after the maximum bond strength. Both bond stiffness and strength also drop at a constant slip when the number of cyclic loading increase. The bond resistance subjected to cyclic loading decreases significantly for reinforcing bars with low rib height.

  • PDF

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

SHPB 테크닉을 이용한 Al5052-H32의 동적 인장 거동 규명 (Determination of Dynamic Tensile Behavior of Al5052-H32 using SHPB Technique)

  • 이억섭;김면수;백준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.790-794
    • /
    • 1997
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to those mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental behavior under high strain rate loading condition In this paper, dynamic deformation behaviors of A15052-H32 under high strain rate tensile loading are determined using the SHPB technique.

  • PDF

지진하중을 받는 필댐 정부변위에 영향을 미치는 입력물성에 대한 민감도 분석 (Sensitivity Analysis of Rockfill Parameters Influencing Crest Displacements of CFRD Subjected to Earthquake Loading)

  • 하익수;신동훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.351-357
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam during earthquake loading with this input parameter. From the sensitivity analysis, it was found that the crest displacement of CFR type dam subjected to dynamic loading was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the extent of effect of shear modulus on the displacement at the crest of CFRD due to dynamic loading decreased as maximum amplitude of input acceleration increased.

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

모드 II 하중을 받는 CTS 시험편의 피로균열 전파거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Crack Propagation Behavior in CTS Specimen under Mode II Loading)

  • 송삼홍;이정무
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1217-1226
    • /
    • 2003
  • The purpose of this paper is to investigate fatigue crack behavior under shear(Mode II) loading. Various specimens and devices have been used in order to produce Mode II loading in fatigue experiments for shear crack propagation. But, there is not sufficient comparisons of experimental results between Mode II and others loading modes, because of characteristics of applied loads and specimens. So, compact tension shear(CTS) specimens were used in this paper to investigate the propagation behavior of Mode II by comparing the experimental results between loading modes. We firstly observed the characteristics which was showed in Mode II experiment using CTS specimens. The experimental results under Mode II loading were compared with fatigue crack behavior under Mode I and Mixed-mode I+II loading. The characteristics for initiation and propagation behavior under Mode II loading was investigated by such comparisons.

혼합모드상태에서의 Al 5052-H32 셀프 피어싱 리벳 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Self-Piercing Riveted Al 5052-H32 Joints under Mixed Mode Loading Conditions)

  • 곽진구;강세형;김호경
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In this study, static and fatigue tests on the self-piercing riveted (SPR) joint were conducted using cross-shaped specimens with aluminum alloy (Al-5052) sheets. Mixed mode loading was achieved by changing the loading angles of 0, 45, and 90 degrees using a special fixture to evaluate the static and fatigue strengths of the SPR joints under mixed mode loading conditions. Simulations of the specimens at three loading angles were carried out using the finite element code ABAQUS. The fatigue specimens failed in an interfacial mode where a crack initiated at the upper sheet and propagated along the longitudinal direction and finally fractured Maximum principal stress, von-Mises effective stress failed to correlate the fatigue lifetimes at three loading angles. However, the equivalent stress intensity factor was found to be appropriate to correlate the fatigue lifetimes at three loading angles.