논의 시기별 파장별 분광반사특성을 조사하기 위해, Landsat TM 밴드, RVI, 습윤도의 특성을 분산분석한 결과, 가시광선 영역의 TM 밴드 1, 2, 3의 논지역 평균 자료값은 식물색소에 의한 광흡수와 관련이 많아 군락형성이 최대인 8월 19일과 9월 1일에 가장 낮아졌다가 등숙기인 9월 중 하순에 다시 높아졌다. 중간 적외선 영역인 TM 밴드 5와 7은 수분에 민감하여, 담수상태로 수체의 영향이 컸던 5월 31일과 6월 2일의 자료값이 가장 낮았고, 군락의 최성기에서 성숙기로 접어들면서 식물체의 수분함량이 줄어들어 자료값이 점점 높아졌다. 한편, RVI는 출수ㆍ개화기인 8월 19일과 9월 1일에 가장 높았고, 습윤도는 벼의 생육초기에서 성숙기로 갈수록 계속 낮아졌다. 이앙기인 5월 31일, 출수기인 8월 19일 두시기 자료에서 수분에 민감한 TM 밴드 5, 식생의 특징이 드러나는 RVI, 또한 모든 밴드의 특성이 포함된 습윤도를 벼 재배면적 추정을 위한 정보로 이용하여, 이앙기에 담수상태이고 같은 지역이 출수기에 무성한 식생의 특징을 보이는 곳을 벼 재배지역으로 정하여 벼 재배면적 지도를 작성하였다. 벼 재배면적은 7291.19ha 추정되었고, 지형도를 이용한 100지점의 정확도 검증 결과 92%로 나타났다. 1991년 5월 31일과 8월 19일 두 시기의 Landsat TM 밴드 3, 4, 5, RVI 및 습윤도를 각각 유효밴드로 선정하여 중첩한 총 10개의 밴드를 가진 화상을 생성하여 기존의 분류법에 이용하였다. 최대우도법에 의한 감독분류 결과 벼 재배면적은 9100.98 ha였다. Error matrix에 의한 분류정확도는 97.2%로 나타났고, 지형도를 이용한 정확도는 95%로 나타났다. 분류항목수를 15개와 20개로 한 ISODATA법에 의한 비교사 분류결과 벼 재배면적이 각각 6663.60ha와 5704.56 ha로 추정되었고, 지형도에 의한 분류정확도는 각각 87%와 82%로 나타났다. 통계연보를 기준자료로 하여 분류방법간 비교를 위하여 당진군 우강면에 대하여 벼 재배면적 비교를 한 바 감독분류에 의해 2522.97ha로 가장 크게 추정되었고, 다음이 규칙기반분류와 분류항목수를 20으로 한 무감독분류법으로 각각 1567.31 ha와 1865.61 ha로 추정되었다. 분류항목수를 15로 한 무감독분류에 의한 벼 재배면적이 1638.72 ha로 가장 작게 추정되었다. 이때, 통계연보 자료상의 우강면의 논면적(2242.69ha)에 가장 가깝게 추정된 결과는 규칙기반분류이었다. 벼 재배지역은 추정방법에 관계없이 이앙기와 출수기, 두 시기의 자료를 이용한 경우 다소 차이는 있으나 정확하게 구분되었다. 위성의 분광반사 특성을 이용한 규칙기반분류는 매우 쉽고, 재현성이 있으며, 넓은 지역에 대한 신속한 작업이 가능하다.
사람의 키는 당사자가 갖고 있는 고유한 생물학적 특질이기 때문에 어떤 사람의 신원을 특정하고자 할 때 유용한 단서로 활용할 수 있다. 이러한 이유로 범죄 사건이나 재난 상황이 발생한 경우 신원 불상 피해자의 신원을 확인하기 위해 표준화된 절차에 따라 키를 추정한다. 하지만 키를 추정하는 절차나 방법이 올바르지 않다면 추정된 키의 정확도는 낮을 수밖에 없다. 본 연구에서는 국내에서 발견된 백골 변사자에 대한 법의인류학적 감정 내용 가운데 키 추정을 위해 사용되는 방법의 적정성을 검토하고 키 추정치의 정확도를 높일 수 있는 방법들을 살펴보고자 한다. 이를 위해 국립과학수사연구원에 의뢰된 560건의 백골 변사자에 대한 부검 결과를 검토하였고, 구체적인 논의를 위해 고(故) 유병언씨(이하 '유씨'로 칭함)의 키 추정 사례를 이용하였다. 유씨의 키는 Trotter (1970)의 공식 가운데 표준오차가 더 적은 종아리뼈 공식이 있음에도 불구하고 넙다리뼈 공식을 이용해 추정됐다. 추정 결과를 보고하는데 있어서 '표준오차(standard error)'를 '오차구간'으로 간주함으로써 추정치의 범위를 지나치게 좁게 제시했다. 또, 나이듦에 따른 키 감소분을 고려하지 않았기 때문에 부검감정서 상의 유씨의 키는 사망 당시의 키가 아닌 생전 당시의 최고 키라고 해석하는 게 타당하다. 마지막으로, 한국인 여성의 키를 추정하기 위해 백인 여성 공식을 사용하게 되면 실제보다 키를 작게 추정할 가능성이 높다. 키 추정의 정확도를 높이기 위해 해부학적 방법을 고려할 필요가 있다. 만약 해부학적 방법의 적용이 곤란한 경우라면 한국인 자료를 이용해 개발된 공식을 적용하는 게 바람직하다. 1980년대 이후 한국인 자료를 이용해 키를 추정할 수 있는 방법들이 다수 개발됐다. 한국인을 대상으로 한 공식을 적용해 변사자의 키를 보다 정확히 추정한다면 향후 한국에서 발견된 변사자의 신원 확인 가능성 또한 높아질 것으로 기대된다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
문화관광축제는 전국의 지역축제 가운데 광역시 도에서 추천한 축제 가운데 관광상품성이 크고, 경쟁력 있는 우수한 축제를 선정하여 지원하는 사업이다. 문화관광축제 종합평가계획(문화관광부, 2006)에 의하면 방문객의 만족도 평가, 전문위원 평가, 그리고 축제 개선실적 등을 감안하여 최우수축제, 우수축제, 유망축제, 예비축제로 선정되고 있다. 특히 예비축제를 제외한 문화관광축제는 공공부문의 사업비 지원을 받기 때문에 1,000여 개가 넘는 지역축제의 방문객 만족도 평가는 상호비교가 가능한 평가척도를 이용하여 종합평가분석이 이루어진고 있다. 이러한 견지에서 본 연구에서는 문화관광축제 공통평가속성이 방문객 만족과 사후행동의도에 미치는 영향관계를 파악하여, 향후 축제기획 시 방문객 만족도 제고와 지속가능한 문화관광축제로 선정되기 위한 시사점을 제시하였다. 본 연구에서는 이론연구를 통하여 문화관광축제 평가속성, 만족, 그리고 행위의도에 관한 변수를 도출하였으며, 2006 광주김치대축제 방문객을 대상으로 실증분석을 수행하였다. 문화관광축제 평가속성에 대한 요인분석을 통하여 홍보안내, 행사내용, 기념품 음식, 편의시설 요인을 도출하였으며, 축제방문객 만족과 행동의도와의 관계를 분석하였다. 연구모형을 통해 수립한 연구가설은 차이분석, 회귀분석, 공분산 구조분석 등을 통해 검증하였으며, 연구결과 모든 가설은 채택되었다. 향후 본 연구결과를 바탕으로 본 축제와 성격이 유사한 축제방문객 분석을 통한 비교연구를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.