• Title/Summary/Keyword: maximum likelihood classification

검색결과 160건 처리시간 0.022초

The Classifications using by the Merged Imagery from SPOT and LANDSAT

  • Kang, In-Joon;Choi, Hyun;Kim, Hong-Tae;Lee, Jun-Seok;Choi, Chul-Ung
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.262-266
    • /
    • 1999
  • Several commercial companies that plan to provide improved panchromatic and/or multi-spectral remote sensor data in the near future are suggesting that merge datasets will be of significant value. This study evaluated the utility of one major merging process-process components analysis and its inverse. The 6 bands of 30$\times$30m Landsat TM data and the 10$\times$l0m SPOT panchromatic data were used to create a new 10$\times$10m merged data file. For the image classification, 6 bands that is 1st, 2nd, 3rd, 4th, 5th and 7th band may be used in conjunction with supervised classification algorithms except band 6. One of the 7 bands is Band 6 that records thermal IR energy and is rarely used because of its coarse spatial resolution (120m) except being employed in thermal mapping. Because SPOT panchromatic has high resolution it makes 10$\times$10m SPOT panchromatic data be used to classify for the detailed classification. SPOT as the Landsat has acquired hundreds of thousands of images in digital format that are commercially available and are used by scientists in different fields. After the merged, the classifications used supervised classification and neural network. The method of the supervised classification is what used parallelepiped and/or minimum distance and MLC(Maximum Likelihood Classification) The back-propagation in the multi-layer perception is one of the neural network. The used method in this paper is MLC(Maximum Likelihood Classification) of the supervised classification and the back-propagation of the neural network. Later in this research SPOT systems and images are compared with these classification. A comparative analysis of the classifications from the TM and merged SPOT/TM datasets will be resulted in some conclusions.

  • PDF

DYNAMIC AUTOCORRELATION TEMPERATURE MODELS FOR PRICING THE WEATHER DERIVATIVES IN KOREA

  • Choi, H.W;Chung, S.K
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.771-785
    • /
    • 2002
  • Many industries like energy, utilities, ice cream and leisure sports are closely related to the weather. In order to hedge weather related risks, they invest their assets with portfolios like option, coupons, future, and other weather derivatives. Among weather related derivatives, CDD and HDD index options are mainly transacted between companies. In this paper, the autocorrelation system of temperature will be checked for several cities in Korea and the parameter estimation will be carried based on the maximum likelihood estimation. Since the log likelihood increase as the number of parameters increases, we adopt the Schwarz information criterion .

Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images (다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류)

  • Hwang, Do-Hyun;Hwang, Byongjun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2013
  • To classify the landfast ice in the north of the Greenland, observation data, multifrequency Synthetic Aperture Radar (SAR) images and texture images were used. The total four types of sea ice are first year ice, highly deformed ice, ridge and moderately deformed ice. The texture images that were processed by K-means algorithm showed higher accuracy than the ones that were processed by SAR images; however, overall accuracy of maximum likelihood algorithm using texture images did not show the highest accuracy all the time. It turned out that when using K-means algorithm, the accuracy of the multi SAR images were higher than the single SAR image. When using the maximum likelihood algorithm, the results of single and multi SAR images are differ from each other, therefore, maximum likelihood algorithm method should be used properly.

Decomposition of category mixture in a pixel and its application for supervised image classification

  • Matsumoto, Masao;Arai, Kohei;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.514-519
    • /
    • 1992
  • To make an accurate retrieval of the proportion of each category among mixed pixels (Mixel's) of a remotely sensed imagery, a maximum likelihood estimation method of category proportion is proposed. In this method, the observed multispectral vector is considered as probability variables along with the approximation that the supervised data of each category can be characterized by normal distribution. The results show that this method can retrieve accurate proportion of each category among Mixel's. And a index that can estimate the degree of error in each category is proposed. AS one of the application of the proportion estimation, a method for image classification based on category proportion estimation is proposed. In this method all pixel in a remotely sensed imagery are assumed to be Mixel's, and are classified to most dominant category. Among the Mixel's, there exists unconfidential pixels which should be categorized as unclassified pixels. In order to discriminate them, two types of criteria, Chi square and AIC, are proposed for fitness test on pure pixel hypothesis. Experimental result with a simulated dataset show an usefulness of proposed classification criterion compared to the conventional maximum likelihood criterion and applicability of the fitness tests based on Chi square and AIC,

  • PDF

A Study on Statistical Modeling of Spatial Land-use Change Prediction (토지이용 공간변화 예측의 통계학적 모형에 관한 연구)

  • 김의홍
    • Spatial Information Research
    • /
    • 제5권2호
    • /
    • pp.177-183
    • /
    • 1997
  • S1he concept of a class in the land-use classification system can be equally applied to a class in the land-use-change classification. The maximum likelihood method using linear discriminant function and Markov transition matrix method were integrated to a synthetic modeling effort in order to project spatial allocation of land-use-change and quantitative assignment of that prediction as a whole. The algorithm of both the multivariate discriminant function and the Markov chain matrix were discussed and the test of synthetic model on the study area was resulted in the projection of '90 year as well as '95 year land -use classification. The accuracy and the issue of modeling improvement were discussed eventually.

  • PDF

On EM Algorithm For Discrete Classification With Bahadur Model: Unknown Prior Case

  • Kim, Hea-Jung;Jung, Hun-Jo
    • Journal of the Korean Statistical Society
    • /
    • 제23권1호
    • /
    • pp.63-78
    • /
    • 1994
  • For discrimination with binary variables, reformulated full and first order Bahadur model with incomplete observations are presented. This allows prior probabilities associated with multiple population to be estimated for the sample-based classification rule. The EM algorithm is adopted to provided the maximum likelihood estimates of the parameters of interest. Some experiences with the models are evaluated and discussed.

  • PDF

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제19권2호
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • 제22권2호
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

The Comparison of Visual Interpretation & Digital Classification of SPOT Satellite Image

  • Lee, Kyoo-Seock;Lee, In-Soo;Jeon, Seong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.433-438
    • /
    • 1999
  • The land use type of Korea is high-density. So, the image classification using coarse resolution satellite image may not provide land cover classification results as good as expected. The purpose of this paper is to compare the result of visual interpretation with that of digital image classification of 20 m resolution SPOT satellite image at Kwangju-eup, Kyunggi-do, Korea. Classes are forest, cultivated field, pasture, water and residential area, which are clearly discriminated in visual interpretation. Maximum likelihood classifier was used for digital image classification. Accuracy assessment was done by comparing each classification result with ground truth data obtained from field checking. The classification result from the visual interpretation presented an total accuracy 9.23 percent higher than that of the digital image classification. This proves the importance of visual interpretation for the area with high density land use like the study site in Korea.

  • PDF

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • 제28권6호
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.