• Title/Summary/Keyword: maximum likelihood (ML) receiver

Search Result 57, Processing Time 0.028 seconds

Performance Analysis of Transmit Weights Optimization for Cooperative Communications in Wireless Networks (무선네트워크의 협력통신을 위한 전송 무게(Transmit Weight) 최적화를 위한 연구)

  • Kong, Hyung-Yun;Ho, Van Khuong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1025-1030
    • /
    • 2005
  • Cooperative communications among users in multiple access wireless environments is an efficient way to obtain the powerful benefits of multi-antenna systems without the demand for physical arrays. This paper proposes a solution to optimize the weights of partnering users' signals for the minimum error probability at the output of maximum likelihood (ML) detector under the transmit power constraints by taking advantage of channel state information (CSI) feedback from the receiver to the transmitter. Simulation programs are also established to evaluate the performance of the system under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

Performance Analysis of a UWB System with MIMO Antennas in Indoor Channel Environments (실내 환경의 채널에서 MIMO 안테나로 구성된 UWB 시스템의 성능 분석)

  • Kim Su-Nam;Kang Dong-Wook;Kim Ki-Doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1564-1572
    • /
    • 2004
  • UWB(Ultra Wide Band) under standardization for WPAN has a restriction in transmitting power because of interference with existing systems. To overcome the restriction, in this paper, we construct the MIMO(Multi-input-Multi-Output) channel using multi-transmit/receiver antennas and analyze the performance of the proposed system. In addition, through numerical simulation, we obtain the interference property among these antennas and analyze the effect of an interference to the system. The proposed UWB system has a ML detector and the least square method will be used to cancel the multi-user interference and the inter symbol interference caused by multipath.

A Low Complexity Candidate List Generation for MIMO Iterative Receiver via Hierarchically Modulated Property (MIMO Iterative 수신기에서 계층적 변조 특성을 이용한 낮은 복잡도를 가지는 후보 리스트 발생 기법)

  • Jeon, Eun-Sung;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.500-505
    • /
    • 2009
  • In this paper, We present a low complexity candidate list generation scheme in iterative MIMO receiver. Since QAM modulation can be decomposed into HP symbols and LP symbol and HP symbol is robust in error capability, we generate HP symbol list with simple ZF detector output and its corresponding neighbor HP symbols, Then, based on HP symbol list, the LP symbol list is generated by using the sphere decoder. From the second iteration, since apriori value from channel decoder is available, the candidate list is updated based on demodulated apriori value. Through the simulation, we observe that at the first iteration, the BER performance is worse than LSD. However, as the number of iteration is increased, the proposed scheme has almost same performance as LSD. Moreover, the proposed one has reduced candidate list generation time and lower number of candidate list compared with LSD.

New Hierarchical Modulation Scheme Using a Constellation Rotation Method (성상회전 변조기법을 이용한 새로운 계층변조 기법)

  • Kim, Hojun;Shang, Yulong;Park, Jaehyung;Jung, Taejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.66-76
    • /
    • 2016
  • In this paper, we propose a new hierarchical modulation scheme for DVB-NGH to improve the performance of LP (Low-Parity) signals by applying a conventional constellation-rotation method to the LP signals without virtually a loss of performance of a HP (High-Parity) signals. The improvement of the LP signals is mainly due to the increased divesity gain caused by the constellation-rotation method which barely affect the performance of the HP signals. For the new scheme, we also propose a hardware-efficient ML (Maximum-Likelihood) detection algorithm that first decodes the HP signals by using a conventional HP receiver, and then simply decodes the precoded LP signals based on the pre-detected HP signals.

Two New Types of Candidate Symbol Sorting Schemes for Complexity Reduction of a Sphere Decoder

  • Jeon, Eun-Sung;Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.888-894
    • /
    • 2007
  • The computational complexity of a sphere decoder (SD) is conventionally reduced by decoding order scheme which sorts candidate symbols in the ascending order of the Euclidean distance from the output of a zero-forcing (ZF) receiver. However, since the ZF output may not be a reliable sorting reference, we propose two types of sorting schemes to allow faster decoding. The first is to use the newly found lattice points in the previous search round instead of the ZF output (Type I). Since these lattice points are closer to the received signal than the ZF output, they can serve as a more reliable sorting reference for finding the maximum likelihood (ML) solution. The second sorting scheme is to sort candidate symbols in descending order according to the number of candidate symbols in the following layer, which are called child symbols (Type II). These two proposed sorting schemes can be combined with layer sorting for more complexity reduction. Through simulation, the Type I and Type II sorting schemes were found to provide 12% and 20% complexity reduction respectively over conventional sorting schemes. When they are combined with layer sorting, Type I and Type II provide an additional 10-15% complexity reduction while maintaining detection performance.

Optical Encryption and Information Authentication of 3D Objects Considering Wireless Channel Characteristics

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • In this paper, we present an optical encryption and information authentication of 3D objects considering wireless channel characteristics. Using the optical encryption such as double random phase encryption (DRPE) and 3D integral imaging, a 3D scene with encryption can be transmitted. However, the wireless channel causes the noise and fading effects of the 3D transmitted encryption data. When the 3D encrypted data is transmitted via wireless channel, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, and so on. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. In addition, using computational volumetric reconstruction of integral imaging and advanced correlation filters, the noise effects may be remedied and 3D information may be authenticated. To prove our method, we carry out an optical experiment for sensing 3D information and simulation for optical encryption with DRPE and authentication with a nonlinear correlation filter. To the best of our knowledge, this is the first report on optical encryption and information authentication of 3D objects considering the wireless channel characteristics.

A Study on the Development of Next Generation Wireless PAN Algorithms with Location Awareness Technique (위치인식기반의 차세대 무선 PAN 알고리즘 개발에 관한 연구)

  • Cho, Juphil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2095-2100
    • /
    • 2012
  • In this paper, we propose the channel sounding scheme which is made for ideal communication between some application as well as the short distance of high speed data transmission in MIMO-OFDM system for Wireless PAN. This method is able to perceive the duration of the impulse response through the delaying of power delay profile, modeled a power delay profile which has an attenuate characteristic, and obtained the coefficient of channel response by ML (maximum likelihood). Through the amplitudes, phases and delays associated with each multipath component which were acquired from this channel sounding scheme, we can describe the wave propagation characteristics of channels between the transmitter and receiver so that the receiver could enhance not only the reliability but also the ability of communication link. Multi agent system models can be used to analyze the path of the system within any time frame. Further, parameter values can be perturbed to examine how the path of the system changes in response to exogenous shocks.