• 제목/요약/키워드: maximum inter-story drift

검색결과 49건 처리시간 0.028초

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames

  • Mansouri, Iman;Shahbazi, Shahrokh;Hu, Jong Wan;Moghaddam, Salar Arian
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.1-15
    • /
    • 2019
  • In the structures with high level of ductility, the earthquake energy dissipation in structural components is an important factor that describes their seismic behavior. Since the connection details play a major role in the ductile behavior of structure, in this paper, the seismic response of 3-, 5- and 8-story steel special moment frames (SMFs) is investigated by considering the effects of panel zone modeling and the influence of forward-directivity near-field ground motions. To provide a reasonable comparison, selected records of both near and far-field are used in the nonlinear time-history analysis of models. The results of the comparison of the median maximum inter-story drift under excitation by near-field (NF) records and the far-field (FF) ground motions show that the inter-story drift demands can be obtained 3.47, 4.86 and 5.92 times in 3-, 5- and 8-story structures, respectively, undergoing near-field earthquakes.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

철골가새골조의 반응수정 계수 (Response Modification Factor of Steel Braced Frames)

  • 김진구;남광희;최현훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.231-238
    • /
    • 2003
  • The overstrength factor and the ductility factor are the two important factors that determines response modification factors used in current seismic codes. The objective of this paper is to obtain the overstrength and ductility factors of special concentric braced frames. For this purpose pushover analysis is performed with model structures until the maximum inter-story drift reaches 2.5% of story height. According to the analysis results, the overstrength factors increase as the height of structures decreases and the span length increases. Ductility factors for mid-story structures turns out to be higher than the other structures and span length does not contribute much to ductility factors.

  • PDF

Knee brace가 설치된 모멘트저항골조의 내진성능 (Seismic Performance of a Knee-Braced Moment Resisting Frame)

  • 최현훈;김진구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.171-180
    • /
    • 2005
  • 본 연구에서는 기름이나 가스의 송유관을 지지하기 위하여 일반적으로 사용되는 3층의 Knee brace가 설치된 모멘트저항골조(KBMRF)의 내진성능을 평가하였다. KBMRF의 하중-변위 관계를 관찰하기 위하여 비선형 정적 pushover 해석을 수행하였다. 최대층간변위가 층높이의 1.5%에 도달하였을 때 보와 기둥과 같은 주요 구조부재는 탄성상태를 유지하는 것으로 나타났다. UBC-97의 설계스펙트럼에 부합되도록 조정한 8개의 지진기록을 이용하여 비선형 동적시간이력해석을 수행한 결과에 따르면, 최대층간변위는 구조물 높이의 1.5% 변위한계보다 작았고 기둥은 탄성적으로 거동하였다. 따라서 본 연구에서 고려한 KBMRF 구조물의 내진성능은 내진설계기준에서 규정한 모든 요구사항을 만족하는 것으로 나타났다.

Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datt, Tushar K.
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.399-415
    • /
    • 2020
  • Responses of semi-rigid frames having different degrees of semi-rigidity obtained by the nonlinear static analysis (NSA) are evaluated at specific target displacements by comparing them with those obtained by the nonlinear time-history analysis (NTHA) for scaled earthquakes. The peak ground accelerations (PGA) of the earthquakes are scaled such that the obtained peak top story displacements match with the target displacements. Three different types of earthquakes are considered, namely, far-field and near-field earthquakes with directivity and fling-step effects. In order to make the study a comprehensive one, three degrees of semi-rigidity (one fully rigid and the other two semi-rigid), and two frames having different heights are considered. An ensemble of five-time histories of ground motion is included in each type of earthquake. A large number of responses are considered in the study. They include the peak top-story displacement, maximum inter-story drift ratio, peak base shear, total number of plastic hinges, and square root of sum of the squares (SRSS) of the maximum plastic hinge rotations. Results of the study indicate that the nonlinear static analysis provides a fairly good estimate of the peak values of top-story displacements, inter-story drift ratio (for shorter frame), peak base shear and number of plastic hinges; however, the SRSS of maximum plastic hinge rotations in semi-rigid frames are considerably more in the nonlinear static analysis as compared to the nonlinear time history analysis.