• Title/Summary/Keyword: maximum holding time

Search Result 71, Processing Time 0.024 seconds

A study on the mechanical properties of austempered low-alloy ductile cast iron (오스템퍼링한 低合金 球狀黑鉛鑄鐵의 機械的 性質에 관한 硏究)

  • 강명순;박흥식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1296-1302
    • /
    • 1988
  • The study has been carried out under various experimental conditions to investigate mechanical properties by the transformation conditions of austempered low-alloy ductile cast iron. The amount of retained austenite and bainite after quenching was determined by the X-ray diffractometer and the point counting method and which the microstructure was investigated by the S.E.M. The mechanical properties of austempered low-alloy ductile cast iron can be varried over a comparatively wide range by changing the transformation conditions. During isothermal transformation of austenite in the bainite region, low-alloy ductile cast iron austempered at holding time of 40 minute has the maximum volume fraction(24%) of retained austenite in the cast iron matrix and which optimum values of mechanical properties correspond to the maximum amount of retained austenite, which falls with decreasing transformation temperature. The low values of both tensile strength and elongation in the initial stage of bainite transformation can be explained by premature fracture of tensile specimens and the tensile strength, hardness and elongation do not change considerably after a certain period. With a decreasing transformation temperature the tensile strength increase while the elongation decrease, especially the elongation has the maximum value at temperature $370^{\circ}C$.

The Thermal Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 열적특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.84-92
    • /
    • 2008
  • Disclosed is a study related to the thermal characteristics of Pinus densiflora and Quercus dentate identifying the presence of any significant difference in the above trees, which are native to Young Dong Province of Korea, according to different regions of the trees such as branches, barks, living leaves and dead leaves. For this purpose, we have carried out a cone calorimeter test focusing on the variables such as mass loss, heat release, ignition time, flame holding time and concentrations of CO and $CO_2$. The results showed that the total mass loss was greatest in tree branches, whereas the ignition time of dead leaves was fastest both in Pinus densiflora and Quercus dantata. The flame holding times of dead leaves and barks were about $640{\sim}1,016s$ and the total heat release of dead leaves was around 60.1 $MJ/m^2$, twice the total heat release of living leaves. In addition, the maximum exhaust concentrations of CO and $CO_2$ in tree branches of Quercus dentata was 2.82 times higher than those of Pinus densiflora, respectively. From the foregoing, it was confirmed that there exist region-specific differential thermal characteristics in Pinus densiflora and Quercus dentata.

Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process (LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발)

  • Na, Cho Rok;Nam, Jung Soo;Song, Jun Yeob;Ha, Tae Ho;Kim, Hong Seok;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

Physicochemical Properties of Konjac Glucomannan (구약감자 Glucomannan의 이화학적 특성)

  • Kim, Nam-Soo;Ji, Soo-Kyung;Mok, Chul-Kyoon;Kim, Seung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.799-804
    • /
    • 1994
  • A 0.625% dispersion of the pretreated konjac (Amorphophallus konjac) flour was treated with 3 volumes of ethanol and the precipitate was dried at room temperature to produce purified glucomannan in 67.2% yield. Konjac glucomannan was analyzed for proximate composition and the contents of total dietary fiber and minerals. TLC analysis with a mobile phase of isopropanol : $H_2O$(4 : 1, v/v) revealed the presence of mannose and glucose as component sugars. The molecular mass of konjac glucomannan was in the range between 240 and 370 kDa as determined by HPLC with a Protein Pak 300SW column. Water holding capacity of konjac glucomannan was greater than those of most other gums except guar and xanthan gums. Konjac glucomannan accelerated foam formation of bovine serum albumin. As the concentration of konjac glucomannan increased up to 2%, maximum viscosity increased drastically, whereas the swelling time at maximum viscosity decreased. When swelling temperature increased, maximum viscosity and the swelling time at maximum viscosity decreased simultaneously.

  • PDF

Synthesis and Hardness of Glass Ceramics for Dental Crown Prosthetic Application in the system CaO-MgO-SiO2-P2O5-TiO2 (치관 보철용 CaO-MgO-$SiO_2-P_2O_5-TiO_2$계 글라스 세라믹의 합성과 경도)

  • Chung, In-Sung;Kim, Kap-Jin;Cheong, HO-Keun;Lee, Jong-Il
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 1999
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-$P_2O_5-TiO_2$ glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature, holding time and chemical composition in relation to mechinical properties. Crystallization peak temperatures were determined by differential thermal analysis(DTA). Crystalline phases and mircostructures of heat-treated sample were determined by the means of powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The final crystalline phase assemblages and the microstructures of the samples were found to be dependent on glass compositions, heattreatment temperature, and holding time. 1st crystallization peak temperature(TP), affected strongly by apatite, was found to be increased or decreased. From the experiment, the following results were obtained : 1. The crystallization peak temperature($T_P$) formed by apatite increased until adding up to 9wt% $TiO_2$ to base glass composition, then decreased above that. 2. Apatite($Ca_{10}P_6O_{25}$), whitlockite(${\beta}-3CaO-P_2O_5$), $\beta$-wollastonite($CaSiO_3$), magnesium tianate($MaTiO_3$) and diopside(CaO-MgO-$2SiO_2$) crystal phase were precipitated in MgO-CaO-$SiO_2-TiO_2-P_2O_5$ glass system containing 9wt% and 11wt% of $TiO_2$ 3. Vickers hardness of samples increased with increasing heat-treatment temperature and Vickers hardness of S415T9 samples heat-treated at 1075 was approxi-mately 813Kg $mm^{-2}$ as maximum value. 4. Vickers hardness of samples increased due to precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix.

  • PDF

Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy (니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향)

  • Choi Woo-Hyuk;Kim Sung-Wook;Kim Jong-Hyun;Kim Gil-Young;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

Optimal Design of a Permanent Magnetic Actuator for Vacuum Circuit Breaker using FEM

  • Yoo Yong-Min;Kim Dae-Kyong;Kwon Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.92-97
    • /
    • 2006
  • This paper presents the characteristic analysis and the optimal design of a permanent magnetic actuator (PMA) for a vacuum circuit breaker (VCB) using a two-dimensional finite element analysis. The purpose of this research about a PMA is to minimize the breaking time and the volume of the permanent magnet within the limits of the holding force and maximum current in the coil. The conjugate gradient method is used as an optimization algorithm. The node moving technique is iteratively implemented until the design variables of the PMA are optimized. In this paper, the optimal design of a PMA is accomplished to improve the conventional design methods.

Fabrication of functionally graded materials of hydroxyapatite and titanium (Hydroxyapatite 와 titanium의 경사 기능 재료 제조)

  • 김성진;박지환;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.144-148
    • /
    • 2002
  • Hydroxyapatite/titanium composites were prepared as 4-layered functionally graded materials (FGM) using a spark plasma sintering (SPS) apparatus. The maximum density and the biaxial strength of hydroxyapatite/titanium composites were achieved by SPS with a holding time 8 minutes at $1200^{\circ}C$. However, the hydroxyapatite was decomposed tetracalcium phosphate (TetCP) at $1100^{\circ}C$, and calcium titanate compounds ($CaTiO_3$) were formed. When titanium was added to hydroxyapatite, decomposition of hydroxyapatite was occurred easily at the low temperature.

Development of a Upper Body Micropostural Classification Scheme Based on Perceived Joint Discomfort (인체 관절 동작의 지각 불편도에 근거한 상체의 자세 분류 체계의 개발)

  • Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.447-455
    • /
    • 1998
  • It is important to identify and evaluate poor working postures properly to prevent work-related musculoskeletal disorders. The purpose of this study is to develope a new upper body micropostural classification scheme for analyzing postural stress in industry. Most of the existing postural classification schemes were based either on the literature, or on simple biomechanical principles, or on a subjective ranking system. The scheme suggested in this study was based on perceived joint discomfort measured through experiment, in which nineteen subjects participated and the magnitude estimation method was employed to obtain subjects' joint discomfort. Also, the criteria for evaluating postural stress of working postures were presented for practitioners of health and safety to be able to redesign working methods and workplaces, which was based on maximum holding time by Miedema and other people. It is expected that the scheme developed in this study could be used as a valuable tool when evaluating working postures.

  • PDF

Evaluation of Dairy Manure Production in Bedded Pack Barn (깔짚우사 내 젖소분뇨 발생량 평가)

  • Jo, Hyun-Soo;Lee, Seung-Hun;Lee, Jae-Hee;Ahn, Hee-Kwon
    • Journal of Animal Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • This study was conducted to determine the amount of manure production from Holstein dairy cattle raised in bedded pack barn and the appropriate bedding material removal time. Total six heads of dairy cows (about 715 kg weight) were raised in three pens (two heads per pen) for 62 days. Average daily production of manure containing sawdust bedding was 21.2 kg per head and that of manure excluding bedding was 18.7 kg. Moisture content of bedding materials were significantly increased up to 86% of water holding capacity (WHC) of sawdust during the first 30 days. It kept very stable level after 30 to 50 days. Theoretically, 30 days after adding fresh bedding seems to be proper removal time only based on WHC. On the other hand, from a practical perspective, maximum 50 days after adding new bedding would be fine by comprehensively considering various factors such as bedding material purchasing cost, feeding environment and manure treatment.