치관 보철용 CaO-MgO-SiO2-P2O5-TiO2계 글라스 세라믹의 합성과 경도

지산대학 치기공과

=Abstract=

Synthesis and Hardness of Glass Ceramics for Dental Crown Prosthetic Application in the system CaO-MgO-SiO2-P2O5-TiO2

Chung, In Sung · Kim, Kap Jin · Cheong, HO Keun · Lee, Jong II

Dept. of Dental technology, Jisan College

Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-P2O5-TiO2 glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature, holding time and chemical composition in relation to mechinical properties. Crystallization peak temperatures were determined by differential thermal analysis(DTA). Crystalline phases and mircostructures of heat-treated sample were determined by the means of powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The final crystalline phase assemblages and the microstructures of the samples were found to be dependent on glass compositions, heattreatment temperature, and holding time. 1st crystallization peak temperature(TP), affected strongly by apatite, was found to be increased or decreased.

From the experiment, the following results were obtained :

- 1. The crystallization peak temperature(T_P) formed by apatite increased until adding up to 9wt% TiO₂ to base glass composition, then decreased above that.
- 2. Apatite(Ca10P6O25), whitlockite(-3CaO-P2O5), -wollastonite(CaSiO3), magnesium tianate(MaTiO3) and diopside(CaO-MgO-2SiO2) crystal phase were precipitated in MgO-CaO-SiO2-TiO2-P2O5 glass system containing 9wt% and 11wt% of TiO2
- 3. Vickers hardness of samples increased with increasing heat-treatment temperature and Vickers hardness of S415T9 samples heat-treated at 1075 was approxi-mately 813Kg \cdot mm² as maximum value.
- 4. Vickers hardness of samples increased due to precipitation of apatite, whitlockite, -wollastonite, magnesium titanate, and diopside crystal phases within glass matrix.

. 서 론

25wt% MgO-CaO-SiO₂-가 P₂O₅ (hydroxyapatite) 가 , , 가 , , $(K_2Mg_2SiO_3O_{22}F)$ SiO₂ (Dentsply International Co., U.S.A.), Cerastore In-ceram(Vita Co., Germany), Optec(Jeneric/ Penton Inc., U.S.A) , 가 가 (1983) , , (1984) Calcium phosphate glass-ceramics , Kokubo (1985) apatite가 crown MgO-CaO-SiO₂-P₂O₅ (1986)apatite magnesium titanate ,日野 年澄 (1989) , , MgO-SiO₂-P₂O₅-TiO₂ (all . ceramic crown) 가 , 가 Mclean (1975)가 300MPa , Sadone (1985) TiO₂ CaO-MgO-SiO₂-P₂O₅-TiO₂ 300MPa 가 Vita (1989) ,

600MPa

20wt% hydroxyuapatite, 55wt% -wollastonite

In-Ceram

가

Dicor

, Kihara

가

,

CaO-MaO-SiO₂-P₂O₅-

.

.

,

(JFC-1100E, Jeol Co., Japan)

2.기기분석

.

│ . 재료	Japan)	TG/DTA(R130-3-B, Rigaku Co., - AbOo			
1. 재료 및 시편 제조	oupuit)	. D	, , , ,	200	
CaHPO ₄ · 2	2H2O, CaCO3, MgCO3,		50mg	フ	ነት
TiO ₂ , SiO ₂	Table 1	10 /min			1,200
	1				Х
		(Rikagı	I D/Max	-II, Rigaku Co	o., Japan)
50g 가					40kV,
(Linderberg Co., U.S.A)) 1,400	가 30mA,		가 4。/min,	Ni 가
30	,	CuK	2 = 10	80 <u>.</u>	
				(N	/IVK H1,
2	XRD	Mitutoyo Co., J	lapan)	AS	ТМ
	325mesh			(JSM 5400,	Jeol Co,
DTA		Japan)		•	

Table 1.	Batch	Composition	of	samples
----------	-------	-------------	----	---------

Constituent (wt%)	SiO_2	CaO	MgO	TiO_2	P_2O_5
Sample No.					
S415	27.76	34.66	12.65	6.63	18.30
S415T3	26.93	33.62	12.27	9.43	17.75
S415T6	26.09	32.58	11.89	12.23	17.20
S415T9	25.26	31.54	11.51	15.03	16.65
S415T11	24.71	30.85	11.26	16.90	16.29

Ⅲ. 결과 및 고찰

1. 열분석

DTA Fig. 1 Table 2 . Fig. 1 DTA , DTA (T_g)가 700 710 , (T_s)가 730 739, (T_∞)가 768 791 , (T_c)가 822 836 (T_{p1}) Table 2 1 (Tp2) 853 861 , 2 895 912 , 3 4 S415T9 S415T11 3 S415T9 (T_{p3}) 4 (T_{p4}) 1012 1075 S415T11

1012 1082 DTA 1 , 2 apatite wollastonite 가 apatite whitlockite 1 , apatite . , 1 TiO₂ 가 6wt% 가 가 , 가 TiO₂ 1

Temperature (°C)	T _c	$T_{\rm pl}$	T_{p2}	T_{p3}	T _{p4}
Sample No.					
S415	829	853	910		
S415T3	828	854	912		
S415T6	828	856	912		
S415T9	822	861	911	1012	1075
S415T11	836	854	900	1012	1082

Table 2. DTA Re	esults of	Samples
-----------------	-----------	---------

 T_c ; primary crystallization peak temperature T_{p2} ; 2nd crystallization peak temperature

 T_{pl} ; 1st crystallization peak temperature T_{p3} ; 3rd crystallization peak temperature

T_{p4}; 4th crystallization peak temperature

가 가 9wt% Kumer (1977)apatite TiO₂ 가 가 . S415T9 S415T11 4 가 apatite(Ca₁₀P₆O₂₅), wollastonite(CaO-SiO₂), whitlockite(-3CaO-P2O5), MaTiO3 diopside $(CaO-MgO-2SiO_2)$

2. X선 회질 분석 Fig. 1 DTA

Х

Fig 2. XRD patterns of samples heat-treated at 875 for 30 min

, 875 30 S415, S415T3, S415T6, S415T9 S415T11 Х Fig. 2 . Fig. 2 apatite wollastonite, diopside magnesium titanate . DTA 가 S415T9 4 가 , S415T9 Х Fig.

3 . Fig. 3 , S415T9 DTA 1 850 apatite wollastonite , 2 875 , 900 825 2

Fig 3. XRD patterns of S415T9 samples heat-treated at various temperatures for 30 min.

(diopside	magnesium	3. 🕻	기세구조 분	석			
titanate	. 3		875	, 925 , 10	10	1075	30	
	1010	apatite,		S415	Т9			
magnesium titanate	whitlockite		(SEM)	Fig.	4		Fig.
, wollastonite	diopside		4	, 875				
가 가				apatite		0.	1 <i>µ</i> m,	0.5
4	1075	apatite	μ m					
wollastonite	whitlockite							
		, diopside	925			X	RD	
	가	가	wollas	tonite, diopsio	de	magnesiur	n titanat	e
		DTA						
3	wo	llastonite	, 87	75				
diopside								
, 4	diopside		wollas	tonite, diopsio apatite	de	magnesiur	n titanat	e

Fig 4. SEM photographs of fracture surface of S415T9 samples heat-treated at different temperatures for 30 min : a) 875 , b) 925 , c) 1010 , d) 1075

. 1010 가 diopside가 apatite whitlockite 가 . wollastonite . 1075 가 가 가 가 4. 비커스 경도 특성 Fig. 6 indentor TiO₂ Zeiss Co., Germany) 400 , TiO₂ Fig. 5 . Fig. 5 . . S415(875) 가 가 가 Apatite, S415T9(1010) whitlockite, -wollastonite, magnesium titanate, diopside S415T9 S415 S415T9 S415T11 가 , S415T9 apatite 가 가 850 가 wollastonite 가 Kokubo (1986) 가 apatite , 가 wollastonite

.

Fig 5. Vickers Hardness of samples with various TiO_2 Contents. Each sample was heat-treated at 875 for 30 min

가 wollastonite 가 (Carl S415T9(850) 가 1010 apatite wollastonite , 가 가 apatite magnesium titanate 가 . 가가 S415T9 850 , 875 , 925 , 1010 1075 30 Fig. 7 Х .

apatite, wollastonite, magnesium titanate, whitlockite, diopside

925 가 가 925 가 , 950 1050 가 .

.

Fig 6. Vickers indentation of samples heat-treated at different temperatures for 30 min.

a) S415(875), b) S415T9(850), and c) S415T9(1010), S415(875) indicates that samples S415 is heat treated at 875 .

Fig 7. Vickers hardness of S415T9 samples heat-treated at various temperatures for 30 min

$\begin{array}{c} \text{CaO-MgO-SiO}_2\text{-}P_2\text{O}_5\text{-}\text{TiO}_2\\ \text{TiO}_2 \end{array}$

1. DTA	apatite		
	(Tp)가 TiO2		
9wt%	가 가,		

2. CaO-MgO-SiO₂-P₂O₅-TiO₂ 9wt% 11wt% TiO₂7 7, apatite(Ca₁₀P₆O₂₅), whitlockite(-3CaP-P₂O₅),

-wollastonite(CaSiO₃), magnesium titanate (MgTiO₃) diopside(CaO-MgO-2SiO₂)

3. フト フト フト . 1075 S415T9 フト 813kg・mm⁻² .

4. A patite, whitlockite, -wollastonite, magnesium titanate diopside

가

참 고 문 헌

- Kokubo, T., Sakka, S., Sako, M. and Ikejiri S.: Preparation of glass-ceramic containing crystalline apatite and magnesium titanate for dental crown, J. Ceram. Soc. Jpn., 97(3): 239–244, (1989)
- Phillips R. W. Science of dental materials, 8th ed., W. B. Saunders Co.(1982)
- Craig, R. G.: Restorative dental materials, 7th ed., C. V. Mosby Co.(1985)
- 4. Craig, R.G: Dental materials properties and manipulation, 2nd ed., C.V. Mosby Co.(1979)
- 김철영:2000년대의 바이오 세라믹스의 실용
 화 전망, 월간 세라믹스, (6):74-77, (1989)
- Kappret, F., Knode, H.: In-Ceram: Testing a new ceramic material, Quintessence of Dental Technology, special reprint 87-97(1993)
- Kokubo, T., Ito, S., Shigematsu, M. and Sakka, S.: Mechanical properties of a new type of apatite containing glass ceramic for prosthetic application, J. Mater. Sci., 20: 2001–2004, (1985)
- Moffa, J., Lugassy, A. and Ellison, J.: Clinical evaluation of a castable ceramic material, J. Dent. Res. Abst., 67:43, (1988)
- Jones, D., Sutow, E., Rizkalla, A. and Black, D.: Opacity and colour of a castable glass-ceramic and cement system, J. Dent. Res. Abst., 67:44, (1988)
- Marshall, S., Gilmore, J. and Marshall, G. External-internal difference in mica orientation in a Castable ceramic crowns, J. Dent. Res. Abst., 67:48, (1988)
- Hojjatie, B. and Anusavice K.: Determinants of tensile stress in castable ceramic crowns, J. Dent. Res. Abst., 67:1589, (1988)

- 12. 하조응, 정형진: 인공치아용 수산화 인산칼
 슘 요업체의 제조, 한국요업학회지, 20(1): 55-62, (1983)
- Kihara, S. and Watanabe, A. Calcium phosphate glass-ceramic crown prepared by lost-wax technique, J. Am. Cerm. Soc., (6): C100-01, (1984)
- 14. 김병호, 박인용 : CaO-P2O5계 결정화 유리 로 된 생체 세라믹스의 합성에 관한 연구, 한국요업학회지, 23(3):66-77, (1986)
- 15. 日野年澄, 丸山剛郎:人工齒冠用 結晶化 유리, Ceramics, 24(7): 608-613, (1989)
- Shyu J. J. and Wu J. M. Crystallization of MgO-CaO-SiO₂-P₂O₅ glass, J. Am. Ceram. Soc., 73(4): 1062-68, (1990)
- 17. 김성식, 박현수, 김종희: K₂O-SiO₂-TiO₂계 유리의 결정화, 한국요업학회지, 22(2): 44-50, (1985)
- 18. 이종민, 김부경, 최병현, 양중식 : Li₂O-Al₂O₃-SiO₂계 유리에서 RO치환 및 R₂O₃ 첨가에 따른 결정화 특성, 한국요업학회지, 22(2): 3-10, (1985)
- 이상호, 정수진: Li₂O-Al₂O₃-2SiO₂의 조성 을 갖는 유리에서 ß-eucryptite의 핵생성 및 결정 성장, 한국요업학회지, 22(3): 53-59, (1985)
- 20. 이승범, 한상옥 : Li₂O-ZnO-SiO₂계 유리의
 결정화, 한국요업학회지, 24(3):227-234, (1987)
- Kumar, A. H. and Tummala R. R. : TiO₂ doped zinc lead borate glass for protecting circuits on alumina substrate, J. Am. Ceram. Soc. Bull., 8(3): 112–115, (1977)
- 22. Kokubo, T., Ito, S. and Sakka S.: Formation of a high-strength bioactive glassceramics in the System MgO-CaO-SiO₂-P₂O₅, J. Mater. Sci., 21:536-540, (1986)
- 23. Gozalbo, A., Amoros, J. L., Escardino, A. and Ibanez, M. J.: Influence of micro-

structure on indentation hardness of $ZnO-Al_2O_3-SiO_2-TiO_2$ glass ceramics, British Ceramic Transactions 93(4):137-140, (1994) Roesky, R. and Varner J. R. Influence of thermal history on the crystallization behavior and hardness of a glass-ceramic, J. Am. Ceram. Soc., 74(5): 1129-30, (1991)