• 제목/요약/키워드: maximum flow rate

검색결과 1,164건 처리시간 0.024초

개구부에 삽입한 수직평판이 헬륨.공기치환류에 미치는 영향 (Effect of Partition within Opening on Helium-Air Exchange Flow)

  • Tae-il Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.797-805
    • /
    • 2003
  • This paper describes experimental investigations of helium-air exchange flow through single opening and partitioned opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with the opening, for partition ratios H_p/H$_1$$ in the range 0 to 1. where H_p$ and H$_1$ are partition length and height of the opening. respectively. In the case of H_p/H$_1$$ of 0, flow passages of upward flow of the helium and downward flow of the air within the opening are unseparated (bidirectional), and the two flows interfere within the opening. The unseparated flow increases strength of flow resistance and therefore, the exchange flow rate is minimum through range of the partition ratios. Two flow zones, i.e., separated (unidirectional) flow zone and unseparated (bidirectional) flow zone, exist with increasing the partition length. The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at H_p/H$_1$$ of 1. As a result of comparison of the exchange flow rates by changing the partition ratio, the fluids Interference in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

개구부 삽입부의 길이가 헬륨 및 공기의 치환류에 미치는 영향 (Effect of Opening Partition Length on Helium-Air Exchange Flow)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.192-200
    • /
    • 1999
  • This paper describes experimental investigations of helium-air exchange flow through parti-tioned opening. Such exchange flow may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with partitioned opening for parti-tion rations $H_p/H_1$ in the range 0 to 1 where $H_p$ and $H_1$ are partition length and height of the open-ing respecticely. In the case of $H_p/H_1$ of 0 flow passages of upward flow of the helium and down-ward flow of the air within the opening are unseparated (bidirectional) and the two flows interact exchange flow rate is minimum through range of the partition ratios, Two flow zones i.e. separat-ed(unidirectional)flow zone and unseparated(bidirectional) flow zone exist with increasing the partition. length, The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at $H_p/H_1$ of 1. As a result fo comparison of the exchange flow rates by changing the partition ration the fluids interaction in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

  • PDF

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

LNG 터미널 송출 운전 최적화 사례 연구 (Case Study on Optimization of Send-out Operation in Liquefied Natural Gas Receiving Terminal)

  • 박찬샘;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.150-155
    • /
    • 2015
  • 최근 전세계적인 액화천연가스(LNG) 수요의 증가로 인해 LNG 터미널의 건설이 크게 늘어나고 있으며 기존의 LNG 터미널도 저장시설을 확장하고 있는 추세이다. 이에 따라 LNG 터미널의 다수의 저장탱크가 존재할 때 LNG를 송출하게 될 탱크와 각 송출량을 선택하는 것은 전체 공정 운전에 중대한 영향을 미칠 수 있다. 본 연구에서는 전체 송출량이 정해져 있을 경우 레벨이 각기 다른 탱크들에 대해 발생하는 BOG 양을 최소화 할 수 있도록 각 탱크의 송출량을 최적화하는 연구를 수행하였다. 저장 탱크의 특성과 구조에 맞게 벽면과 바닥면에서 유입되는 열과 탱크 재질의 열전도도를 고려한 동적모델을 구성하였고, 레벨을 변화시켜 각 레벨에 따른 BOG 양을 계산하여 얻은 BOG 발생량을 탱크 레벨에 따라 지수함수로 회귀분석하였다. 이를 통해 탱크의 특성과 레벨에 따라 BOG 발생량을 예측할 수 있는 BOR(Boil-off Rate) 모델을 얻을 수 있었다. 개발한 BOR 모델을 이용하여 BOG 발생량을 최소화하는 목적함수를 설정하고 요구되는 송출량, 탱크내 레벨 제한, 탱크 당 가능한 송출량을 제한조건으로 설정하여 각 탱크의 최적 송출량을 결정하는 운전 최적화를 수행하였다. 이를 실제 운전되고 있는 인천 LNG 터미널의 18개 저장탱크에 적용하여 다양한 레벨이 분포되어 있고 총 송출량이 80,000 m3/day(최대 송출량)이 요구되는 시나리오에 대해 최적화를 수행하여 가정한 기존의 운전방법과 비교하였을 때 BOG 양을 약 9% 감소시킬 수 있었다.

태양열 난방시스템의 최적 유량에 관한 연구 (A Study on the Optimal Water Flow Rate of the Solar Heating System)

  • 성관제;김효경
    • 대한설비공학회지:설비저널
    • /
    • 제12권1호
    • /
    • pp.2-11
    • /
    • 1983
  • The solar energy retention rate of a flat plate collector can be increased by increasing water flow rate through the collector which also increases the pumping energy incurred in obtaining that solar energy. The problem of optimal flow rate is formulated to fit within the framework of pontryagin's maximum principle and with a few simplifying assumptions, an optimal solution that can be easily implemented is obtaincd, The optimal solution is used in the simulation of a solar heating system using actual climatological data and the results are compared with that of on-off control. The result that not only the object function but, In some cases, also the solar energy retention rate the collector is increased. In is also found that the optimal control gets more advantageous as the solar insolation level gets lower, and also as tile cost of auxiliary heating fuel gets higher.

  • PDF

Study on Flow Analysis of Three-Dimensional Screw Propeller With Respect to Rotational Speed Variable

  • Moon, Byung-Young;Sun, Min-Young;Lee, Ki-Yeol
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.500-507
    • /
    • 2014
  • This study aimed at conducting a flow analysis of the pressure distribution, discharge flow rate, and consequent thrust force according to the rotational speed of a three-dimensional screw propeller, and then investigating the effect of the rotational speed on the characteristics of the screw propeller by varying the relevant speed (3200, 2400, 1600, 800 rpm). In particular, the computational domain was considered by the analysis in the blades and outlet chamber, using boundary conditions. The difference between the minimum and maximum pressures was 5.5 MPa under the given conditions. The discharge flow rate at this pressure difference was on the level of 1956.67 kg/s, as a thrust force of 47083.7 T(N) was obtained. This study showed that the discharge flow rate linearly increased with the rotational speed, proportional to the RPM, while the thrust force was gradually and steadily increased with the relevant speed. In addition, it was proved that the occurrence of cavitation under the given conditions was closely related to the decrease in the durability of the screw propeller because the thrust force depends on the speed.

공기양정(Air-Lift)펌프의 양수특성에 관한 연구 (A Study on Lifting Characteristics of Air-Lift Pump)

  • 김동균;이철재;배석태;조태환
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.14-21
    • /
    • 1999
  • As an effective means to convey crushed materials from seabed to onboard ship and to raise hazardous or abrasive liquids, air-lift pump provides a reliable mechanism due to its simple configuration and easy-to-operate principle. The present study is focused on investigation of related performance by the analysis program based on the gas-liquid two-phase flow in circular pipes. The program covers pump operating in isothermal and vertical two-phase flow with Newtonian liquids. It is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates. The comparison between riser performance of the conveyed liquid flow rate calculated by the computer program and measured data with large scale air lift pump system constructed in 200 meter depth vertical tank reveals similar distribution.

  • PDF

다중 필터 시스템의 유동특성 해석 (Analysis of Flow Characteristics of Multiple Filter System)

  • 손인수;서미영;김준호;유진석
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.615-621
    • /
    • 2023
  • In this study, flow analysis of single, double, and triple filter systems of cylindrical structures was performed to analyze the flow characteristics of each filter. As a result of the flow analysis of the filter system, the number of filters and the pressure drop rate tend to be proportional to each other. It was found that the area passing through the inside of the filter had almost the same pressure. The maximum pressure drop rate of the triple filter system was about 14.9% for the forward-flow and about 12.4% for the reverse-flow. It was determined that the performance of the filter was stable within 20% of the allowable pressure drop rate of the filter system, which is the standard presented to the Korea Water Technology Certification Institute(KWTCI). In the future, a study on the decompression characteristics of the filter system according to the effect of the arrangement interval and filter density of the triple filter will be conducted.

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

송풍량이 음식물쓰레기 발효건조에 미치는 영향 (Effects of Air-flow Rate on Bio-drying of Food waste)

  • 유정숙;윤영만
    • 유기물자원화
    • /
    • 제26권2호
    • /
    • pp.65-73
    • /
    • 2018
  • 본 연구는 음식물쓰레기의 발효건조를 위한 최적 운전조건을 도출하기 위하여 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$의 송풍조건에서 발효건조 회분식 반응기를 20일간 운전하였으며, Modified Gompertz 모델을 이용하여 발효건조 기간 중 반응기내에서의 유기물 분해반응속도를 분석하였다. 유기물 분해 반응속도 분석에서 최대 유기물 분해량 (P)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.31, 2.52, 2.27, 1.88 kg이었으며, 최대 유기물 분해속도 ($R_m$)는 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 0.33, 0.45, 0.28, 0.18 kg/day를 보여 송풍량 $1.00L/min{\cdot}kg$에서 우수한 유기물 분해효율을 보였다. 발효건조 반응기의 지체성장시간 (${\lambda}$)은 송풍량 0.75, 1.00, 1.25, $1.50L/min{\cdot}kg$에서 각각 2.10, 1.48, 1.15, 1.06 일로 나타나 $0.75L/min{\cdot}kg$의 적은 송풍조건에서 가장 긴 지체성장시간을 보여 송풍량의 증가는 지체성장시간을 단축시키는 것으로 나타났다. 음식물쓰레기 발효건조 반응기의 운전에서 수분 제거율은 발효건조 반응기 운전 초기에서 중기로 갈수록 송풍량 증가와 함께 증가하다가 발효건조 반응기 운전 말기에는 송풍량 $1.00L/min{\cdot}kg$에서 가장 높은 수분 제거율을 보여 발효건조의 최적 송풍조건은 $1.00L/min{\cdot}kg$으로 나타났다.