• Title/Summary/Keyword: maximum electric power

Search Result 717, Processing Time 0.031 seconds

Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave (2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

Thermal Characteristics of Oil-cooled In-wheel Motor in Electric Vehicles (전기자동차용 유냉식 인휠 모터의 방열 특성 연구)

  • Lim, Dong Hyun;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • Cooling the in-wheel motor in electric vehicles is critical to its performance and durability. In this study, thermal flow analysis was conducted by evaluating the thermal performance of two conventional cooling models for in-wheel motors under the continuous rating base speed condition. For conventional model #1, in which cooling oil was stagnant in the lower end of the motor, the maximum temperature of the coil was $221.7^{\circ}C$; for conventional model #2, in which cooling oil was circulated through the exit and entrance of the housing and jig, the maximum temperature of the coil was $155.4^{\circ}C$. Therefore, both models proved unsuitable for in-wheel motors since the motor control specifications limited the maximum temperature to $150^{\circ}C$.

A Quick MPPT Strategy of Rooftop Photovoltaic Generation System for the Electric Vehicle (전기자동차를 위한 루프형 태양광 발전 시스템의 속응 최대 전력점 추종기법)

  • Kang, Kyoungpil;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.325-326
    • /
    • 2014
  • This paper is research about the Maximum Power Point Tracking following algorism of solar power system attached small electric car. In this paper, we investigate P&O MPPT and Incremental Conduction MPPT among existing MPPT following algorism. And by changing them, the better algorism is proposed being able to follow Maximum Power Point rapidly as amount of solar radiation changes applied to the Solar Energy Generation System.

  • PDF

Evaluation on Structural Performance of Structural Insulated Panels in Wall Application (벽식 구조체 적용을 위한 구조용단열패널 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Lee, Cheol-Hee;Hwang, Sung-Wook;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.

The Effects of Penetration of the Electric Vehicles on the Electric Power Grid in the Jeju Island (제주도에서 전기자동차 보급이 전력계통에 미치는 영향)

  • Oh, Seong-Bo;Lee, Gae-Myoung;Hwang, Choong-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • The Jeju Special Self-Government Provincial Government has made the plan penetrating gradually electric vehicles(EVs) in the Jeju Special Self-Government Province(Jejudo). However the effects of EVs penetration on the electrical grid of the Jejudo is not reported. In this paper the yearly electric energy consumed by the EVs was calculated and the effects of the EV penetration on the peak power of the grid were analyzed in the Jejudo for the future 10 years, and we hope that our study results will help the governors realize the EVs penetration plan in the Jejudo. The calculation results show that the rate of the electric energy used by the EVs will become to 2.9% at its maximum at the 2017 year when the penetration rate of EVs in passenger cars becomes 10%, and the rate of the electric energy consumed by the EVs will become to 9.4% at its maximum at the 2020 year when the penetration rate of EVs in passenger cars becomes 30%. The concepts of smart-charging capacity and 100%-valley-filling charging capacity of the grid were defined and calculated for the Jeju Grid, and the grid was analyzed to have the sufficient EV charging capacity until the 2022 year.

Development of Comparative Verification System for Reliability Evaluation of Distribution Line Load Prediction Model (배전 선로 부하예측 모델의 신뢰성 평가를 위한 비교 검증 시스템)

  • Lee, Haesung;Lee, Byung-Sung;Moon, Sang-Keun;Kim, Junhyuk;Lee, Hyeseon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Through machine learning-based load prediction, it is possible to prevent excessive power generation or unnecessary economic investment by estimating the appropriate amount of facility investment in consideration of the load that will increase in the future or providing basic data for policy establishment to distribute the maximum load. However, in order to secure the reliability of the developed load prediction model in the field, the performance comparison verification between the distribution line load prediction models must be preceded, but a comparative performance verification system between the distribution line load prediction models has not yet been established. As a result, it is not possible to accurately determine the performance excellence of the load prediction model because it is not possible to easily determine the likelihood between the load prediction models. In this paper, we developed a reliability verification system for load prediction models including a method of comparing and verifying the performance reliability between machine learning-based load prediction models that were not previously considered, verification process, and verification result visualization methods. Through the developed load prediction model reliability verification system, the objectivity of the load prediction model performance verification can be improved, and the field application utilization of an excellent load prediction model can be increased.

The Basic Study on Overvoltage of HVDC Transmission Line Using TNA (계통과도전압분석기를 이용한 직류송전선로의 과전압에 대한 기초적 해석)

  • Woo, Jung-Wook;Shim, Jeong-Woon;Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1810-1812
    • /
    • 1997
  • This paper describes the results of ground fault analysis on HVDC Transmission Line using TNA (Transient Network Analyzer). The maximum overvoltage is about 1.7 p.u. in the case of single line to ground fault on the overhead transmission line. When the cable is linked to the end of the overhead transmission line, the maximum overvoltage is about 1.58 p.u..

  • PDF

A Study on the Electric System Design by the Forecasting of Maximum Demand (최대수요전력 예측에 의한 전기계통 설계에 관한 연구)

  • 황규태;김수석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.1
    • /
    • pp.29-39
    • /
    • 1992
  • In this paper, the basic idea of optimum electric system design by means of the forecasting of maximum demand is presented, and the load characteristics and practical operating conditions are based on the technical data. After reconstruction of th model plant by use of above method, power supply reliability, future extention, initial cost, and running cost saving effects are analyzed. As a result, it is verified that the systems wherein the power is supply to each load frm main transformer whose capacity is calculated by forecasting are economic rather than the systems wherein the power is supply to each electric feeders from each corresponding transformer.

  • PDF

Improving the performance of PV system using the N-IC MPPT methods (N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF

Analysis of Energy Conversion Efficiency in Micro Power Generation using Vibrating Piezoelectric Cantilever (압전빔의 진동을 이용한 마이크로 동력원의 에너지 변환 해석)

  • Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3365-3370
    • /
    • 2007
  • We developed micro power generation system using piezoelectric materials. In our system, the ambient vibrating energy is converting to electric energy by deflection of piezoelectric beams. The system consists of energy generating parts, converting enhancement parts, electric regulation and charging parts, and interface with small-energy-consuming mobile devices. The geometry of piezoelectric beams, the source of vibrating energy, and the electric load of target application determine the characteristics of generating electric power, such as impedance, voltage, current and power density. Therefore, we made a model for analysis of generating power with given information such as piezoelectric materials, geometry, vibration type, and mass. With this model, we can calculate capacitance of piezoelectric beams, generating voltage, current, and power. To obtain maximum energy transfer efficiency, we approached this study in the view of material, electrical, and mechanical engineering

  • PDF