• Title/Summary/Keyword: maximum ductility

Search Result 338, Processing Time 0.024 seconds

Compaction and strength behavior of lime-coir fiber treated Black Cotton soil

  • Ramesh, H.N.;Manoj Krishna, K.V.;Mamatha, H.V.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • This paper describes the compaction and strength behavior of black cotton soil (BC soil) reinforced with coir fibers. Coir used in this study is processed fiber from the husk of coconuts. BC soil reinforced with coir fiber shows only marginal increase in the strength of soil, inhibiting its use for ground improvement. In order to further increase the strength of the soil-coir fiber combination, optimum percentage of 4% of lime is added. The effect of aspect ratio, percentage fiber on the behavior of the composite soil specimen with curing is isolated and studied. It is found that strength properties of optimum combination of BC soil-lime specimens reinforced with coir fibers is appreciably better than untreated BC soil or BC soil alone with coir fiber. Lime treatment in BC soil improves strength but it imparts brittleness in soil specimen. BC soil treated with 4% lime and reinforced with coir fiber shows ductility behavior before and after failure. An optimum fiber content of 1% (by weight) with aspect ratio of 20 for fiber was recommended for strengthening BC soil.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

Experimental Study on the Shear Capacity of the U-Flanged Truss Hybrid Beam With Reinforced End Zone (단부 보강에 따른 U-플랜지 트러스 복합보의 전단 내력에 관한 실험연구)

  • Kim, Young Ho;Park, Sung Jin;Oh, Myoung Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • The U-flanged truss hybrid beam is a new composite beam made by pouring concrete into the U-flanged truss beam. In this study, an experimental study was performed to verify the shear capacity of U-flanged truss hybrid beams with the newly developed end reinforcement details. For all specimens, the maximum shear strength was determined by shear failure of concrete in the loading point The detail reinforced with stirrups at the end zone can exhibit the greatest shear strength, but the method of reinforcing the end zone using vertical steel plates, which is a relatively easy method to manufacture, is considered to be the most effective detail in terms of shear strength and ductility. Also, in the case of U-flanged truss hybrid beams reinforced with vertical steel plates at the end zone, the shear strength can be evaluated on the safety side by using the Korea Design Standard formula.

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Strengthening of T-beams using external steel clamps and anchored steel plates

  • Yunus Dere;Yasin Onuralp Ozkilic;Ali Serdar Ecemis;Hasan Husnu Korkmaz
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • In order to strengthen the reinforced concrete T-beams having insufficient shear strength, several strengthening techniques are available in the literature. In this study, three different strengthening strategies were numerically studied. First one is affixing steel plates to the beam surfaces. Second one includes tightening external steel bars vertically similar to beam stirrups. The last one is simultaneous application of these two strengthening procedures which is particularly proposed in this work. Available experimental test series in the literature were handled in the study. Finite element (FE) models of reinforced concrete beam specimens having sufficient (Beam-1) and low shear capacity (Beam-2) were created within ABAQUS environment. Strengthened beams with different techniques were also modelled to reflect improved shear capacity. FE simulations made it possible to investigate parameters that were not examined during the previous experimental studies. The results of the analyses were then compared and found consistent with the experimentally obtained data. Experimental and FEM analysis results are in agreement between 1% (closest) and 6%. (maximum). Beam-2 was stregthened with 5 new porposed methods. The rate of increase in shear strength varies between 33% and 64%. It was found that, the strengthening techniques were fairly useful in improving the shear capacity of the considered girder. The model with the proposed strengthening alternative has accomplished a higher load carrying capacity, ductility and stiffness than all of the other models.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

Experimental investigation of the influence of fibre content on the flexural performance of simply supported and continuous steel/UHPC composite slabs

  • Sirui Chen;Phillip Visintin;Deric J. Oehlers
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.571-585
    • /
    • 2023
  • The application of relatively low volumes of fibres in normal strength concrete has been shown to be of significant benefit when applied to composite slabs with profiled sheet decking. This paper reports on an experimental study aimed at quantifying further potential benefits that may arise from applying ultra-high performance fibre reinforced concrete. To assess performance six simply supported beams were tested under hogging and sagging loading configurations along with three two span continuous beams. Fibre contents are varied from 0% to 2% and changes in strength, deformation, crack width and moment redistribution are measured. At the serviceability limit state, it is shown that the addition of high fibre volumes can significantly enhance member stiffness and reduce crack widths in all beams. At the ultimate limit state it is observed that a transition from 0% to 1% fibres significantly increases strength but that there is a maximum fibre volume beyond which no further increases in strength are possible. Conversely, member ductility and moment redistribution are shown to be strongly proportional to fibre volume.