DOI QR코드

DOI QR Code

Experimental investigation of the influence of fibre content on the flexural performance of simply supported and continuous steel/UHPC composite slabs

  • Sirui Chen (School of Architecture and Civil Engineering, University of Adelaide) ;
  • Phillip Visintin (School of Architecture and Civil Engineering, University of Adelaide) ;
  • Deric J. Oehlers (School of Architecture and Civil Engineering, University of Adelaide)
  • 투고 : 2022.09.26
  • 심사 : 2023.09.12
  • 발행 : 2023.12.10

초록

The application of relatively low volumes of fibres in normal strength concrete has been shown to be of significant benefit when applied to composite slabs with profiled sheet decking. This paper reports on an experimental study aimed at quantifying further potential benefits that may arise from applying ultra-high performance fibre reinforced concrete. To assess performance six simply supported beams were tested under hogging and sagging loading configurations along with three two span continuous beams. Fibre contents are varied from 0% to 2% and changes in strength, deformation, crack width and moment redistribution are measured. At the serviceability limit state, it is shown that the addition of high fibre volumes can significantly enhance member stiffness and reduce crack widths in all beams. At the ultimate limit state it is observed that a transition from 0% to 1% fibres significantly increases strength but that there is a maximum fibre volume beyond which no further increases in strength are possible. Conversely, member ductility and moment redistribution are shown to be strongly proportional to fibre volume.

키워드

과제정보

This material is based upon work supported by the Australian Research Council Discovery Project 190102650. Sirui Chen was supported by an Australian Government Research Training Program Scholarship. The authors also wish to acknowledge the assistance of Mr Jon Ayoub in completing the lab testing.

참고문헌

  1. Aarthi, D.K., Jeyshankaran, E. and Aranganathan, N. (2019), "Comparative study on longitudinal shear resistance of light weight concrete composite slabs with profiled sheets", Eng. Struct., 200, 109738. https://doi.org/10.1016/j.engstruct.2019.109738.
  2. Abas, F., Gilbert, R., Foster, S. and Bradford, M. (2013), "Strength and serviceability of continuous composite slabs with deep trapezoidal steel decking and steel fibre reinforced concrete", Eng. Struct., 49, 866-875. https://doi.org/10.1016/j.engstruct.2012.12.043.
  3. Ackermann, F.P. and Schnell, J. (2011), "Steel fibre reinforced continuous composite slabs", Compos. Construct. Steel Concrete VI, 125-137. https://doi.org/10.1061/41142(396)11.
  4. Al-Deen, S. (2018), "Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs", Steel Compos. Struct., 26(3), 303-314. https://doi.org/10.12989/scs.2018.26.3.303.
  5. Al-Deen, S., Ranzi, G. and Uy, B. (2015), "Non-uniform shrinkage in simply-supported composite steel-concrete slabs", Steel Compos. Struct., 18(20), 375-394. https://doi.org/10.12989/scs.2015.18.2.375.
  6. Bai, L., Li, Y., Hou, C., Zhou, T. and Cao, M. (2020), "Longitudinal shear behaviour of composite slabs with profiled steel sheeting and ECC", Eng. Struct., 205. https://doi.org/10.1016/j.engstruct.2019.110085.
  7. Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233.
  8. Chen, S., Visintin, P. and Oehlers, D. (2022), "Bond between very-high and ultra-high performance fibre reinforced concrete and profiled deck sheeting", J. Build. Eng., 52, 104426. https://doi.org/10.1016/j.jobe.2022.104426.
  9. Crisinel, M. and Marimon, F. (2004), "A new simplified method for the design of composite slabs", J. Construct. Steel Res., 60(3-5), 481-491. https://doi.org/10.1016/S0143-974X(03)00125-1.
  10. Fang, C., Ali, M., Xie, T., Visintin, P. and Sheikh, A.H. (2020), "The influence of steel fibre properties on the shrinkage of ultra-high performance fibre reinforced concrete", Constr. Build. Mater., 242, 117993. https://doi.org/10.1016/j.conbuildmat.2019.117993.
  11. Ganesh, G.M., Upadhyay, A. and Kaushik, S.K. (2005), "Simplified design of composite slabs using slip block test", J. Adv. Concr. Technol., 3(3), 403-412. https://doi.org/10.3151/jact.3.403.
  12. Gholamhoseini, A. (2018), "Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking", Adv. Struct Eng., Int. J., 10(1), 85-97. https://doi.org/10.1007/s40091-018-0183-3.
  13. Gholamhoseini, A., Khanlou, A., Macrae, G., Hicks, S., Scott, A. and Clifton, G. (2017), "Short-term behaviour of reinforced and steel fibre-reinforced concrete composite slabs with steel decking under negative bending moment", Adv. Struct. Eng., 21, 136943321773971. https://doi.org/10.1177/1369433217739710.
  14. Gholamhoseini, A., Khanlou, A., MacRae, G., Scott, A., Hicks, S and Leon, R. (2016), "An experimental study on strength and serviceability of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs", Eng. Struct., 114, 171-180. https://doi.org/10.1016/j.engstruct.2016.02.010.
  15. Gupta, A.K. and Maestrini, S.R. (1990), "Tension-stiffness model for reinforced concrete bars", J. Struct. Eng., 116(3), 769-790. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(769).
  16. Hamoda, A., Hossain, K.M.A., Sennah, K., Shoukry, M. and Mahmoud, Z. (2017), "Behaviour of composite high performance concrete slab on steel I-beams subjected to static hogging moment", Eng. Struct., 140, 51-65. https://doi.org/10.1016/j.engstruct.2017.02.030.
  17. Hassan, A., Jones, S. and Mahmud, G. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.
  18. Holmes, N., Dunne, K. and O'Donnell, J. (2014), "Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings", Constr. Build. Mater., 55, 365-378. https://doi.org/10.1016/j.conbuildmat.2014.01.046.
  19. Hossain, K., Attarde, S. and Anwar, M. (2019), "Finite element modelling of profiled steel deck composite slab system with engineered cementitious composite under monotonic loading", Eng. Struct., 186, 13-25. https://doi.org/10.1016/j.engstruct.2019.02.008.
  20. Hossain, K.M.A., Alam, S., Anwar, M.S. and Julkarnine, K.M.Y. (2016), "High performance composite slabs with profiled steel deck and Engineered Cementitious Composite - Strength and shear bond characteristics", Constr. Build. Mater., 125, 227-240. https://doi.org/10.1016/j.conbuildmat.2016.08.021.
  21. Huang, L., Xie, J., Li, L., Xu, B., Huang, P. and Lu, Z. (2021), "Compressive behaviour and modelling of CFRP-confined ultra-high performance concrete under cyclic loads", Constr. Build. Mater., 310, 124949. https://doi.org/10.1016/j.conbuildmat.2021.124949.
  22. Hussein, L. and Amleh, L. (2015), "Structural behavior of ultrahigh performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members", Constr. Build. Mater., 93, 1105-1116. https://doi.org/10.1016/j.conbuildmat.2015.05.030.
  23. Kan, Y.C., Chen, L.H. and Yen, T. (2013), "Mechanical behavior of lightweight concrete steel deck", Constr. Build. Mater., 42, 78-86. https://doi.org/10.1016/j.conbuildmat.2013.01.007.
  24. Kataoka, M.N., Friedrich, J.T. and El Debs, A. (2017), "Experimental investigation of longitudinal shear behavior for composite floor slab", Steel Compos. Struct., 23(3), 351-362. https://doi.org/10.12989/scs.2017.23.3.351.
  25. Kwak, H.G. and Seo, Y.J. (2002), "Time-dependent behavior of composite beams with flexible connectors", Comput. Method Appl. M., 191(34), 3751-3772. https://doi.org/10.1016/S0045-7825(02)00293-1.
  26. Larsen, I.L. and Thorstensen, R.T. (2020), "The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review", Constr. Build. Mater., 256, 119459. https://doi.org/10.1016/j.conbuildmat.2020.119459.
  27. Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.
  28. Li, X., Zheng, X., Ashraf, M. and Li, H. (2017), "Experimental study on the longitudinal shear bond behavior of lightweight aggregate concrete - Closed profiled steel sheeting composite slabs", Constr. Build. Mater., 156, 599-610. https://doi.org/10.1016/j.conbuildmat.2017.08.108.
  29. Lin, J.P., Lin, L., Peng, Z., Xu, R. and Wang, G. (2022), "Cracking performance in the hogging-moment regions of natural curing steel-UHPC and steel-UHTCC continuous composite beams", J. Bridge Eng., 27(2), 04021106. doi:10.1061/(ASCE)BE.1943-5592.0001820.
  30. Lin, W., Yoda, T. and Taniguchi, N. (2014), "Application of SFRC in steel-concrete composite beams subjected to hogging moment", J. Construct. Steel Res., 101, 175-183. https://doi.org/10.1016/j.jcsr.2014.05.008.
  31. Lopes, E. and Simoes, R. (2008), "Experimental and analytical behaviour of composite slabs", Steel Compos. Struct., 8(5), 361-388. https://doi.org/10.12989/scs.2008.8.5.361.
  32. Mohammed, B.S. (2010), "Structural behavior and m- k value of composite slab utilizing concrete containing crumb rubber", Constr. Build. Mater., 24(7), 1214-1221. https://doi.org/10.1016/j.conbuildmat.2009.12.018.
  33. Qi, J., Cheng, Z., Wang, J. and Tang, Y. (2020), "Flexural behavior of steel-UHPFRC composite beams under negative moment", Structures, 24, 640-649. https://doi.org/10.1016/j.istruc.2020.01.022.
  34. Salonikios, T.N., Sextos, A. and Kappos, A.J. (2012), "Tests on composite slabs and evaluation of relevant Eurocode 4 provisions", Steel Compos. Struct., 13(6), 571-586. https://doi.org/10.12989/scs.2012.13.6.571.
  35. Simoes, R. and Pereira, M. (2020), "An innovative system to increase the longitudinal shear capacity of composite slabs", Steel Compos. Struct., 35(4), 509-525. https://doi.org/10.12989/scs.2020.35.4.509.
  36. Simon, J., Visuvasam, J. and Babu, S. (2017), "Study on shear embossments in steel-concrete composite slab", In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 263, 032022. https://doi.org/10.1088/1757-899X/263/3/032022.
  37. Singh, M., Sheikh, A., Ali, M.M., Visintin, P. and Griffith, M. (2017), "Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams", Constr. Build. Mater., 138, 12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002.
  38. Sobuz, M.H., Visintin, P., Ali, M., Singh, M., Griffith, M. and Sheikh, A. (2016), "Manufacturing ultra-high performance concrete utilising conventional materials and production methods", Constr. Build. Mater., 111, 251-261. https://doi.org/10.1016/j.conbuildmat.2016.02.102.
  39. Sohel, K.M.A., Liew, J.Y.R. and Fares, A.I. (2021), "Shear bond behavior of composite slabs with ultra-lightweight cementitious composite", J. Build. Eng., 44, 103284. https://doi.org/10.1016/j.jobe.2021.103284.
  40. AS1012 (2000), AS1012.9-2000 Methods of Testing Concrete, Method 9: Compressive Strength Tests - Concrete, Mortar and Grout Specimens, Standard Australia.
  41. AS1012 (2015), AS1012.13-2015 Methods of Testing Concrete, Method 13: Determination of the Drying Shrinkage of Concrete for Samples Prepared in the Field or in the Laboratory, Standard Australia.
  42. AS1012 (1997), AS1012.17-1997 Methods of Testing Concrete, Method 17: Determination of the Static Chord Modulus of Elasticity and Poisson's Ratio of Concrete Specimens, Standard Australia.
  43. AS1391 (2020), AS1391-2020 Metallic Materials - Tensile Testing - Method of Test at Room Temperature, Standard Australia.
  44. AS3582 (2016), AS3582.3-2016 Supplementary Cementitious Materials, Part 3: Amorphous Silica, Standard Australia.
  45. AS3972 (2010), AS3972-1010 General Purpose and Blended Cements, Standard Australia.
  46. AS4671 (2019), AS4671-2019 Steel for the Reinforcement of Concrete, Standard Australia.
  47. Sturm, A., Visintin, P. and Oehlers, D. (2020), "Closed-form expressions for predicting moment redistribution in reinforced concrete beams with application to conventional concrete and ultrahigh performance fiber reinforced concrete", Struct. Concr., 21. https://doi.org/10.1002/suco.201900498.
  48. Sturm, A., Visintin, P., Oehlers, D. and Seracino, R. (2018), "Time-dependent tension-stiffening mechanics of fiber-reinforced and ultra-high-performance fiber-reinforced concrete", J. Struct. Eng., 144(8), 04018122. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002107.
  49. Sturm, A., Visintin, P., Seracino, R., Lucier, G. and Oehlers, D. (2020), "Flexural performance of pretensioned ultra-high performance fibre reinforced concrete beams with CFRP tendons", Compos. Struct., 243, 112223. https://doi.org/10.1016/j.compstruct.2020.112223.
  50. Sturm, A.B. and Visintin, P. (2019), "Local bond slip behavior of steel reinforcing bars embedded in ultra high performance fibre reinforced concrete", Struct. Concr., 20(1), 108-122. https://doi.org/10.1002/suco.201700149.
  51. Sturm, A.B., Visintin, P. and Oehlers, D.J. (2020), "Blending fibres to enhance the flexural properties of UHPFRC beams", Constr. Build. Mater., 244, 118328. https://doi.org/10.1016/j.conbuildmat.2020.118328.
  52. Sun, M., Visintin, P. and Bennett, T. (2022), "The effect of specimen size on autogenous and total shrinkage of ultra-high performance concrete (UHPC)", Constr. Build. Mater., 327, 126952. https://doi.org/10.1016/j.conbuildmat.2022.126952.
  53. Visintin, P., Mohamad Ali, M.S., Xie, T. and Sturm, A.B. (2018), "Experimental investigation of moment redistribution in ultrahigh performance fibre reinforced concrete beams", Constr. Build. Mater., 166, 433-444. https://doi.org/10.1016/j.conbuildmat.2018.01.156.
  54. Visintin, P. and Oehlers, D.J. (2018), "Fundamental mechanics that govern the flexural behaviour of reinforced concrete beams with fibre-reinforced concrete", Adv. Struct. Eng., 21(7), 1088-1102. https://doi.org/10.1177/1369433217739705.
  55. Visintin, P., Sturm, A., Mohamed Ali, M. and Oehlers, D. (2018), "Blending macro-and micro-fibres to enhance the serviceability behaviour of UHPFRC", Aus. J. Civil Eng., 16(2), 106-121. DOI: 10.1080/14488353.2018.1463608.
  56. Wille, K., El-Tawil, S. and Naaman, A.E. (2014), "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cem. Concr. Compos., 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015.
  57. Wu, Z., Yoshikawa, H. and Tanabe, T.A. (1991), "Tension stiffness model for cracked reinforced concrete", J. Struct. Eng., ASCE, 117(3), 715-732. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:3(715).
  58. Yi, O., Mills, J.E., Zhuge, Y., Ma, X., Gravina, R.J. and Youssf, O. (2021), "Performance of crumb rubber concrete composite-deck slabs in 4-point-bending", J. Build. Eng., 102695. https://doi.org/10.1016/j.jobe.2021.102695.
  59. Yoo, S.W. and Choo, J.F. (2016), "Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultra high performance concrete slab", Eng. Struct., 118, 1-15. https://doi.org/10.1016/j.engstruct.2016.03.052.
  60. Zhang, Y., Cai, S., Zhu, Y., Fan, L. and Shao, X. (2020), "Flexural responses of steel-UHPC composite beams under hogging moment", Eng. Struct., 206, 110134. https://doi.org/10.1016/j.engstruct.2019.110134.