• Title/Summary/Keyword: maximum dry unit weight

Search Result 76, Processing Time 0.026 seconds

Characteristics of Hydrogen-sulfide(H2S) removal by a Biofilter with Organic Materials, Peat and Rock wool (유기담체인 Peat 및 Rock wool을 사용한 바이오필터에 의한 황화수소(H2S)의 제거특성)

  • Kim, Nam-jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.136-144
    • /
    • 2001
  • Two organic materials, peat and rock wool were used for removal of $H_2S$ by a biofilter inoculated with night soil sludge. By gradually increasing the inlet load of $H_2S$, the complete removal capacity, which was defined as the inlet load of $H_2S$ that was complete removed, and the maximum removal capacity of $H_2S$, which was the value when the removal capacity leveled off for organic materials, were estimated. Both values for Rock wool are larger than peat, based on a unit dry weight of material. By using kinetic analysis, the maximum removal rate of $H_2S$, $V_m$, and the saturation constant, $K_s$, were determined for all packing materials and the values of $V_m$ for rock wool was found to be larger. By using the kinetic parameters, the removal rates for $H_2S$ were compared both packing materials, and rock wool showed better performance for the removal of $H_2S$ in the inlet concentration range of 0~200ppm.

  • PDF

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Performance of direct-Seeded Rice at Different Seeding Dates (벼 건답휴립직파재배에서 파종기에 따른 생육 및 수량)

  • Lee, Suk-Soon;Back, Jun-Ho;Kim, Soon-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.154-159
    • /
    • 1991
  • A field experiment was conducted to know the feasibility of direct-seeded rice. Dry seeds of a Japonica type rice variety, Donghaebyeo, was sown from May 10 to June 20 at the 10-day intervals. The number of days from seeding to emergence decreased as planting date delayed; 13, 12, 10, 9, and 7 days at May 10, May 20. May 30. and June 10 seedings, respectively. The number of maximum tillers per ㎡ was about 700-800 at all the seeding dates and effective tiller ratio ranged 40-45%. The number of days from seeding to heading decreased as seeding date delayed; from 97 days at May 10 planting to 71 days at June 20 planting. The cumulative effective temperature (mean air temperature-15$^{\circ}C$) from seeding to heading was fairly constant having 870$^{\circ}C$ with 2.3% C.V. The number of panicles per unit area at June 10 planting was higher than that of other planting dates. Panicle length and the number of spikelets per panicle tended to decrease as seeding date delayed. The number of spikelets per unit area, 1000-grain weight, and grain yield were similar among the seeding dates except June 20 seeding. At the June 20 seeding the number of spikelets and grain yield were much lower, but 1000-grain weight was higher compared with other seeding dates. Grain fertility and percent ripened grains was similar among all seeding dates.

  • PDF

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

The Nutritive Value of Mulberry Leaves (Morus alba) and Partial Replacement of Cotton Seed in Rations on the Performance of Growing Vietnamese Cattle

  • Vu, Chi Cuong;Verstegen, M.W.A.;Hendriks, W.H.;Pham, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1233-1242
    • /
    • 2011
  • The in vivo digestibility of mulberry leaves (Morus alba) and the effects of the partial replacement of cotton seed with fresh mulberry leaf in rations on the performance of growing Vietnamese cattle was investigated. For the in vivo digestibility trial, twenty castrated rams of Phanrang breed (a local prolific breed) with an initial weight of 23-25 kg, were first assigned to four groups according to weight and then randomly assigned to one of four dietary treatments to determine digestibility of nutrients in mulberry leaves (M. alba), natural Bermuda grass (Cynodon dactylon), elephant grass (Pennisetum purpureum) and buffalo grass (Panicum maximum cv. TD 58). All forages were cut and chopped daily before being offered (at 120% maintenance) to the sheep. In the feeding trial, 20 Laisind (Vietnam yellow cows${\times}$Red Sindhy bulls) crossbred bulls averaged 18 month old and 184 kg were used to investigate the effect of partial replacement of cottonseed in the diet by mulberry leaves on live weight gain and feed conversion rate. The experiment was a randomized complete block design with four levels of fresh mulberry leaves which varied from 0 to 15% of total dietary dry mater and five animals per treatment over an 84 day period. The in vivo digestion trial showed the superior quality of mulberry leaves compared with the grasses. Chemical analysis indicated that mulberry leaves had the highest CP and the lowest NDF contents (22.3 and 31.1% DM, respectively) among the four forages tested. Digestibility of DM and OM of the mulberry leaf (66.4 and 71.8%, respectively) was also the highest but that of CP (58.2%) and NDF (58.4%) was the lowest of the four forages evaluated (p<0.05). Consequently, the ME value and therefore net energy (NE) and unit feed for lactation (UFL) values of the mulberry leaves, which was estimated from chemical composition and digestibility values, were the highest among the forages investigated in the present study. Results of the feeding trial showed no treatment effect on average daily gain (ADG) of the cattle. The values were 554, 583, 565 and 568 g/d for animals in the diets of 0, 5, 10, and 15% mulberry leaves inclusion, respectively. Total DM intake of the animal was not affected by the treatment when expressed as kg/animal/d. However, when adjusted for metabolic weight of the animal the DM intake was reduced (p<0.05) as whole cottonseed was replaced by mulberry leaves in the ration. When the level of mulberry leaves in the ration increased from 5 to 15% of dietary DM at the expense of whole cottonseed, CP and ME intakes of the cattle were significantly decreased (p<0.05) and the feed to gain ratio reduced by 8 to 14% as compared with the control diet (p<0.05). Mulberry leaf is a good feed ingredient for ruminants because of its high level of crude protein and high digestibility of nutrients and energy. Mulberry leaves can be efficiently used as a source of protein supplement to replace cottonseed, a more expensive animal feeds ingredient, in the diet for Vietnamese cattle.

Geotechnical Characteristics and Utilization Method for Paper Ash of Industrial Waste (산업폐기물 제지회의 지반공학적 특성 및 활용가능성)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Kim, Min-Ho;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • This study is and experimental study to investigate the possibility of the utilization of paper ash as the cover and liner materials in the waste disposal landfill and other construction materials. A series of tests were performed to evaluate basic properties, compaction, compressive strength, consolidation, permeability, and CBR of paper ash. The sample used in these tests was obtained from four paper mills which are located in near Ch$\hat{o}$ngju. Bentonite and lime were used as addictives to improve permeability properties of paper ash. It was found that the maximum dry unit weight increases with the increase of the bentonite and lime contents. The results of unconfined compression tests show that paper ash meets the criteria of the unconfined compression strength. It is recognized that the permeability coefficient decreases as increasing bentonite content and the percentage of bentonite needed to make the permeability coefficient below $1{\times}10^{-7}cm/sec$ was 30%.

  • PDF

Engineering Characteristics of Crushed Rock for Foundation and Backfill Materials of a Conduit (관거의 기초 및 뒷채움재로 활용하기 위한 석분의 공학적 특성)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.67-73
    • /
    • 2006
  • In this study, basic physical tests and mechanical tests of crushed rock were performed in order to investigate the field application of crushed rock as substitute materials of sand that is commonly being used as foundation and backfill materials of sewer conduit. Particle-size distribution curve of crushed rock is similar to sand and also it is well-graded soil than common sand. Maximum dry unit weight in proctor compaction test for crushed rock is higher than the values of common sand. So we can estimate that the crushed rock has advantages in workability than sand for the backfill compaction after construction of sewer conduit. When we investigate the results of direct shear test and triaxial compression test on the crushed rock, it has a similar value of shear strength parameters to sand at the same stress state and as time goes by, it tends to increase the unconfined compression strength. But, because the strength reaches at the constant value after 6~7 days, we expect that it can absorb the lateral strain of flexible conduit well. All the above experimental results just proves that crushed rock can substitute for sand as backfill materials and foundation of sewer conduit.

  • PDF

Application of Particulate Grouts for Improving Strength Characteristics of Municipal Wastes (도시폐기물의 강도특성 향상을 위한 현탁액 주입의 응용)

  • Cheon, Byeong-Sik;Park, Hong-Gyu;Jang, Yeon-Su
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.59-74
    • /
    • 1997
  • This paper presents the results of the geotechnical investigation and settlement analysis of a finished waste landfill to find the possibility of the site as a construction area. Also, the variations of the strength of the municipal waste after mixing with the several types of the particulate grouts are investigated. The materials of the grouts used in the experiment are Quick Lime, Portland Cement, Slag Cement and Geocrete Cement. The results of the geotechnical investigation show that the maximum dry unit weight of the waste becomes lower and optimum moisture content higher as the age of the disposed waste is younger and the organic content is higher. The thickness of the predicted differential settlements of the waste fill has large difference from location to location and the unconfined compression strength of the grout mixed waste from the experiment was higher in the order of Geocrete Cement, Slag Cement, Portland Cement and Quick Lime.

  • PDF