• Title/Summary/Keyword: maximum deflection

Search Result 501, Processing Time 0.026 seconds

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Evaluation of Reinforcing Performance of Window Protection Device Against Strong Wind (강풍에 대비한 창호보호장치의 보강성능 평가)

  • Park, Won Bin;Kim, Hong Jin
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • In modern society, damage caused by strong winds such as typhoons is expected to increase due to urbanization and global warming. In order to test the reinforcement performance of the newly developed window protection device, two-point force test and uniformly distributed load test were carried out on non-reinforced plate glass. It reinforcement performance of the window protection device was evaluated based on the flexural performance improvement. The analytical performance of the window protection device was evaluated by analysis using differential equations of elastic loading method and deflection curve and Midas-Gen. First, the analytical window protection device was evaluated by formulae derived using differential equations of elastic loading and deflection curve. The validity of the derived formulae investigated by comparing the maximum deflection of the central part of the plate with the experimental value and the theoretical value at maximum load. Then the results were compared with those by finite element FE method using Midas-Gen. Under the experimental conditions, with the window protection device, stress reduction effect up to 40% and deflection reduction up to 71.4% under the same load were obtained. It was also found that it is advantageous to perform the FE analysis using the plate element when the performance is evaluated because the error of FE analysis result using plate elements is far less than that using beam elements.

A shake table investigation on interaction between buildings in a row

  • Khatiwada, Sushil;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.175-190
    • /
    • 2013
  • Pounding damage has been observed frequently in major earthquakes in the form of aesthetic, minor or major structural cracks and collapse of buildings. Studies have identified a building located at one end of a row of buildings as very vulnerable to pounding damage, while buildings in the interior of the same row are assumed to be safer. This study presents the results of a shake table investigation of pounding between two and three buildings in a row. Two steel portal frames, one stiffer and another more flexible, were subjected to pounding against a frame with eight other configurations. Three pounding arrangements were considered, i.e., the reference frame (1) on the right of the second frame, (2) in the middle of two identical frames, and (3) on the right of two identical frames. Zero seismic gap was adopted for all tests. Five different ground motions are applied from both directions (right to left and left to right). The amplification of the maximum deflection due to pounding was calculated for each configuration. The results showed that, for the stiffer building in a row, row building pounding is more hazardous than pounding between only two buildings. The location of the stiffer frame, whether at the end or the middle of the row, did not have much effect on the degree of amplification observed. Additionally, for all cases considered, pounding caused less amplification for stronger ground motions, i.e., the ground motions that produced higher maximum deflection without pounding than other ground motions.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

Analysis of a Rotation Stage with Cartwheel-type Flexure Hinges Driven by a Stack-type Piezoelectric Element (십자형 플렉셔 힌지를 갖는 압전소자 구동형 회전 스테이지의 해석)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Min-Young;Ko, Kuk-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.88-94
    • /
    • 2007
  • A flexure hinge-based compliant stage driven by stack-type piezoelectric elements has high precision motion but small operational range due to the characteristics of the piezoelectric element. Since the common flexure hinges can be broken by excessive deflection when the displacement is amplified by a high amplification ratio, a flexure hinge mechanism for large deflection is required. A cartwheel-type flexure hinge has an advantage of larger deflection compared with the common flexure hinges. This study presents a rotation stage with cartwheel-type flexure hinges driven by a stack-type piezoelectric element. The characteristics and the performance of the rotation stage are described by the terms of principal resonance frequency, amplification ratio of rotational displacement, maximum rotational displacement and block moment, in which the terms are analyzed by geometric parameters of the rotation stage. The analyzed results will be used as the guideline of the design of the rotation stage.

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF