• Title/Summary/Keyword: maximum daily rainfall events

Search Result 26, Processing Time 0.027 seconds

Stochastic Structure of Daily Rainfall in Korea (한국 일강우의 추계학적 구조)

  • 이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.72-80
    • /
    • 1989
  • Various analyses were made to investigate the stochastic structure of the daily rainfall in Korea. Records of daily rainfall amounts from 1951 to 1984 at Chinju Metesrological Station were used for this study. Obtained results are as follows : 1. Time series of the daily rainfall at Chinju were positively, serially correlated for the lag as large as one day. 2. Rainfall events, defined as a sequence of consecutive wet days separated by one or more dry days, showed a seasonal variation in the occurrence frequency. 3. The marginal distribution of event characteristics of each month showed significant dif- ferences each other. Events occurred in summer had longer duration and higher magnitude with higher intensity than those of events occurred in winter. 4. There were significant positive correlations among four event characteristics ; dura- tion, magnitude, average intensity, and maximum intensity. 5. Correlations among the daily rainfall amounts within an event were not significant in general. 6. There were no consistant significancy in identity or difference between the distribu- tions of daily rainfall amounts for different days within events. 7. Above mentioned characteristics of daily rainfall time series must be considered in building a stochastic model of daily rainfall.

  • PDF

Analysis of Characteristics of some of Forest Environmental Factors on Debris Flow Occurrence - With a Pusan and Ulsan Metropolitan Areas - (토석류 유출에 기인하는 몇 가지 산림환경인자 분석 - 부산 및 울산광역시를 중심으로 -)

  • Lee, Hae-dong;Park, Jae-hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • This study was carried out to determine the distribution of factors as effected by debris flow in Ulsan and Pusan metropolitan areas because mainly debris flow caused by typhoons and local heavy rainfall events is mainly attributed to damage of human being ad property. The high risk degree of debris flow was to affected by east (20%), northeast (20%) and northwest (20%) slopes with stand age class with elevation (69%) of 100-200 (33%). Also, the risk was high in high erosion collapse degree with slope degree of $20-25^{\circ}$ with over 300 mm (100%) of maximum daily rainfall events and 50-100 mm (50%) or >100 mm (50%) of maximum hourly rainfall events with <5 km of stream path and <50 ha of catchment area. Landslide debris and wood residue flow was also related to igneous rocks (73%) and bank collapse types of debrs flow (57%).

Appropriate identification of optimum number of hidden states for identification of extreme rainfall using Hidden Markov Model: Case study in Colombo, Sri Lanka

  • Chandrasekara, S.S.K.;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.390-390
    • /
    • 2019
  • Application of Hidden Markov Model (HMM) to the hydrological time series would be an innovative way to identify extreme rainfall events in a series. Even though the optimum number of hidden states can be identify based on maximizing the log-likelihood or minimizing Bayesian information criterion. However, occasionally value for the log-likelihood keep increasing with the state which gives false identification of the optimum hidden state. Therefore, this study attempts to identify optimum number of hidden states for Colombo station, Sri Lanka as fundamental approach to identify frequency and percentage of extreme rainfall events for the station. Colombo station consisted of daily rainfall values between 1961 and 2015. The representative station is located at the wet zone of Sri Lanka where the major rainfall season falls on May to September. Therefore, HMM was ran for the season of May to September between 1961 and 2015. Results showed more or less similar log-likelihood which could be identified as maximum for states between 4 to 7. Therefore, measure of central tendency (i.e. mean, median, mode, standard deviation, variance and auto-correlation) for observed and simulated daily rainfall series was carried to each state to identify optimum state which could give statistically compatible results. Further, the method was applied for the second major rainfall season (i.e. October to February) for the same station as a comparison.

  • PDF

Runoff Characteristics of NPS Pollution on Field in Rainy Season (강우시 밭의 비점오염물질 유출 특성)

  • Won, Chul-hee;Choi, Yong-hun;Shin, Min-hwan;Shin, Dong-suk;Kang, Dong-Gu;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.572-579
    • /
    • 2011
  • We have examined the runoff characteristics of nonpoint source (NPS) in fields. Two monitoring sites were equipped with an automatic velocity meter and water sampler. Monitoring was conducted at fields 1 and field 2 during the rainfall event. Ten rainfall-runoff events were monitored and analyzed during the study period. The results show that runoff occurred if daily rainfall and intensity were higher than 40 mm and 1.6 mm/hr except a few extreme rainfall events with very high intensity. Runoff of field 1 was approximately twice of that of field 2. Event mean concentrations (EMC) and pollution load of analyzed water quality indices were also higher in field 2 than in field 1. Especially, TN load from field 2 was $75.4 mg/m^2$ and was about 5 times higher than that from field 1. Analysis of Pearson correlation coefficient of water quality parameter indicates that besides of TN all items in fields 1 have tight relationship respectively (p < 0.01). But those of fields 2 have a significant (p < 0.05). Estimating units loading of NPS, we suggested that variable such as soil texture, rainfall amount and intensity and slope were needed to be considered from agricultural landuses. The results of this study can be used as a basic data in the development and implementation of total maximum daily loads (TMDL) in Korea.

Characteristic Change Analysis of Rainfall Events using Daily Rainfall Data (일강우자료를 이용한 강우사상의 변동 특성 분석)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.933-951
    • /
    • 2009
  • Climate change of global warming may affect the water circulation in Korea. Rainfall is occurred with complex of multiple climatic indices. Therefore, the rainfall is one of the most significant index due to climate change in the process of water circulation. In this research, multiple time series data of rainfall events were extracted to represent the rainfall characteristics. In addition, the occurrence of rainfall time series analyzed by annual, seasonal and monthly data. Analysis method used change analysis of mean and standard deviation and trend analysis. Also, changes in rainfall characteristics and the relative error was calculated during the last 10 years for comparison with past data. At the results, significant statistical results weren't showed by randomness of rainfall data. However, amount of rainfall generally increased last 10 years, and number of raining days had trend of decrease. In addition, seasonal and monthly changes in the rainfall characteristics can be found to appear differently.

Estimating Quantiles of Extreme Rainfall Using a Mixed Gumbel Distribution Model (혼합 검벨분포모형을 이용한 확률강우량의 산정)

  • Yoon, Phil-Yong;Kim, Tae-Woong;Yang, Jeong-Seok;Lee, Seung-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.263-274
    • /
    • 2012
  • Recently, due to various climate variabilities, extreme rainfall events have been occurring all over the world. Extreme rainfall events in Korea mainly result from the summer typhoon storms and the localized convective storms. In order to estimate appropriate quantiles for extreme rainfall, this study considered the probability behavior of daily rainfall from the typhoons and the convective storms which compose the annual maximum rainfalls (AMRs). The conventional rainfall frequency analysis estimates rainfall quantiles based on the assumption that the AMRs are extracted from an identified single population, whereas this study employed a mixed distribution function to incorporate the different statistical characteristics of two types of rainfalls into the hydrologic frequency analysis. Selecting 15 rainfall gauge stations where contain comparatively large number of measurements of daily rainfall, for various return periods, quantiles of daily rainfalls were estimated and analyzed in this study. The results indicate that the mixed Gumbel distribution locally results in significant gains and losses in quantiles. This would provide useful information in designing flood protection systems.

Quantile regression analysis: A novel approach to determine distributional changes in rainfall over Sri Lanka

  • S.S.K, Chandrasekara;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.228-232
    • /
    • 2017
  • Extreme hydrological events can cause serious threats to the society. Hence, the selection of probability distributions for extreme rainfall is a fundamental issue. For this reason, this study was focused on understanding possible distributional changes in annual daily maximum rainfalls (AMRs) over time in Sri Lanka using quantile regression. A simplified nine-category distributional-change scheme based on comparing empirical probability density function of two years (i.e. the first year and the last year), was used to determine the distributional changes in AMRs. Daily rainfall series of 13 station over Sri Lanka were analyzed for the period of 1960-2015. 4 distributional change categories were identified for the AMRs. 5 stations showed an upward trend in all the quantiles (i.e. 9 quantiles: from 0.05 to 0.95 with an increment of 0.01 for the AMR) which could give high probability of extreme rainfall. On the other hand, 8 stations showed a downward trend in all the quantiles which could lead to high probability of the low rainfall. Further, we identified a considerable spatial diversity in distributional changes of AMRs over Sri Lanka.

  • PDF

Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5 (Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.995-1006
    • /
    • 2016
  • According to 5th IPCC Climate Change Report, there is a very high likelihood that the frequency and intensity of extreme rainfall events will increase. In reality, flood damage has increased, and it is necessary to estimate the future probabilistic design rainfall amount that climate change is reflected. In this study, the future probabilistic design precipitation amount is estimated by analyzing trends of future annual maximum daily rainfall derived by RCP 8.5 scenarios and using the scale-invariance technique. In the first step, after reviewing the time-scale characteristics of annual maximum rainfall amounts for each duration observed from 60 sites operating in Korea Meterological Administration, the feasibility of the scale-invariance technique are examined using annual daily maximum rainfall time series simulated under the present climate condition. Then future probabilistic design rainfall amounts for several durations reflecting the effects of climate change are estimated by applying future annual maximum daily rainfall time series in the IDF curve equation derived by scale-invariance properties. It is shown that the increasing trend on the probabilistic design rainfall amount has resulted on most sites, but the decreasing trend in some regions has been projected.

Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River - (농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로-)

  • Kim, Tai-Cheol;Lee, Jeong-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.3-12
    • /
    • 2008
  • It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.