• 제목/요약/키워드: maximum compressive load

검색결과 187건 처리시간 0.025초

이온질화 처리강의 마모현상 분석에 관한 연구 (Study on the Analysis of Wear Phenomena of Ion-Nitrided Steel)

  • 조규식
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.42-52
    • /
    • 1997
  • This paper deals with wear characteristics of ion-nitrided metal theoretically and experimentally in order to analysis of wear phenomena. Wear tests show that compound layer of ion-nitrided metal reduces wear rate when the applied wear load is mall. However, as th load becomes large, the existence of compound layer tends to increase wear rate. The residual stress at the surface of ion-nitrided metal is measured, and the internal stress distribution is calculated when the normal and tangential forces are applied to the surface of metal. Compressive residual stress is largeest at the compound layer, and decreases as the depth from the surface increases. Calculation shows that the maximum stress exists at a certain depth from the surface when normal and tangential force are applied, and that the larger the wear load is the deeper the location of maximum stress becomes. In the analysis, it is found that under small applied wear load the critical depth, where voids and cracks may be created and propagated, is located at the compound layer, as the adhesive wear, where hardness is an important factor, is created the existence of compound layer reduces the amount of wear. When the load becomes large the critical depth is located below the compound layer, and delamination, which may be explained by surface deformation, crack nucleation and propagation, is created, and the existence of compound layer increases wear rate.

복합적층 원통판넬의 좌굴후 압축강도 (Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels)

  • 권진희;홍창선
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • 한국임상수의학회지
    • /
    • 제40권4호
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

KSTAR 초전도자석 지지각 시작품재작 및 구조시험 (KSTAR Superconducting Magnet Supporting Post Prototype Manufacturing and Structural Load Test)

  • 허남일;이영신
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.45-49
    • /
    • 2001
  • A magnet supporting post installed between the lower TF coil tooled by 4.5 K supercritical helium and the cryostat base is one of the most important components of the superconducting magnet supporting structure for KSTAR Tokamak. This structure should be flexible to absorb thermal shrink of the magnet and also should be rigid to support the magnet weight and the Plasma disruptions load. The Post was designed with stainless steel 316LN and CFRP that have low thermal conductivity and high structural strength at low temperature. In order to verify the possibility of fabrication and the structural safety. a whole scale prototype of the KSTAR magnet supporting post was manufactured and tested. Static and compressive cyclic load tests under the maximum Plasma vertical disruption load and the magnet dead weight were performed. The teat results showed that the magnet supporting post of KSTAR Tokamak was possible to manufacture and structurally rigid.

  • PDF

스테인리스와 알루미늄으로 제작된 전동차의 구조체 하중시험에 대한 안전성 평가 (A safety evaluation on the loading test of EMU′s carbody having stainless and aluminum)

  • 정종덕;김원경;윤성철;편장식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1525-1529
    • /
    • 2003
  • This paper describes the result of carbody load test. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Carbody material applied a stainless steel and an aluminum alloy, The stainless steel model is the carbody of a motor car which is delivering to KNR line 1 in 2002 and the aluminum alloy model is the carbody of a motor car which is delivering to GWANGJU line 1 in 2003.

  • PDF

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

The effect of arch geometry on the structural behavior of masonry bridges

  • Altunisik, Ahmet C.;Kanbur, Burcu;Genc, Ali F.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1069-1089
    • /
    • 2015
  • Arch bridges consist of some important components for structural behavior such as arches, sidewalls, filling materials and foundations. But, arches are the most important part for this type of bridges. For this reason, investigation of arch is come into prominence. In this paper, it is aimed to investigate the arch thickness effect on the structural behavior of masonry arch bridges. For this purpose, Goderni historical arch bridge which was located in Kulp town, Diyarbakir, Turkey and the bridge restoration process has still continued is selected as an application. The construction year of the bridge is not fully known, but the date is estimated to be the second half of the 19th century. The bridge has two arches with the 0.52 cm and 0.69 cm arch thickness, respectively. Finite element model of the bridge is constructed with ANSYS software to reflect the current situation using relievo drawings. Then the arch thickness is changed by increasing and decreasing respectively and finite element models are reconstructed. The structural responses of the bridge are obtained for all arch thickness under dead load and live load. Maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the arch thickness effect. At the end of the study, it is seen that the maximum displacements, tensile stresses and strains have a decreasing trend, but compressive stress and strain have an increasing trend by the increasing of arch thickness.

철도적용에서 곡형차량의 구조강도에 관한 연구 (Study on the Structural Strength of Deep Well Rail Car in Railway Applications)

  • 윤성철;김정국
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.317-324
    • /
    • 2016
  • Stress tests were conducted in the carbody of the railroad car to check the structural strength of the body of the railroad car. The objective of this study was to evaluate safety of the carbody of a railroad car under the maximal strength. The carbody of rolling stock is a principal structure that supports major equipment of the underframe and the freight. Therefore, the strength evaluation of this structure is important. This study was carried out to analyze the structure of carbody and evaluate safety under maximum vertical load, compressive load, and torsional load. Accordingly, stress tests were conducted on the carbody to measure the stress on each of their parts. Before the load test, a structural-analysis program was used for the stress distribution analysis of the body structure.

화차 안전성 평가를 위한 차체 정하중시험 및 진동시험 (A safety evaluation on the loading and vibration test of freight car)

  • 권성태;정종덕;김원경;홍용기;허현무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.92-97
    • /
    • 2002
  • This paper describes the result of carbody and vibration test for freight car. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to load a freight car under maximum load and operating condition on line track. The test carbody is constructed by RS korea co., LTD. in accordance with KNR specification. The test cases of the carbody is tested the vertical load and compressive load to verify the strength and stiffness. The vibration test is tested for analysis and evaluation of vibration, to allow for the fact that mechanical vibration in railway vehicles have specific characteristics.

  • PDF