• Title/Summary/Keyword: maximum bearing temperature

Search Result 75, Processing Time 0.021 seconds

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Heat Transfer Analysis of Bearing Unit in Submersible Motor Pump (수중 모터펌프 베어링 유닛 열전달 해석)

  • Yun, Jeong-Eui;Byun, Hyung-Kyun
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • The purpose of this paper is to find a proper cooling system of bearing unit in the submersible motor pump to extend a life time. To do this, heat transfer analysis of the submersible motor pump were performed using commercial CFD code ANSYS. In order to obtain the resonable heat transfer simulation results, we first set up mathematical model of heat source in the bearing system, and carried out heat transfer analysis with the model. As a results, new type bearing cap which had several ribs for cooling the bearing was proposed. Finally, through the comparison between experimental results of old and new model pump, we proofed that maximum bearing temperature of new model was about 10% lower than that of old model.

Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment (정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토)

  • Song, AeHee;Choi, SeongPil;Kim, SeonJin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

An Experimental Analysis on the Maximum Allowable PV Value of Oilless Composite Bearing Materials (오일레스 복합계 베어링재의 최대허용 PV값 측정에 관한 실험적 고찰)

  • 공호성;윤의성;전기수;송광호
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.27-36
    • /
    • 1995
  • Maximum allowable PV values of oilless composite bearing materials (70% epoxy-resin/30% Graphite) were measured and compared at various types of test rigs that have different contact geometry and the operating conditions. Test results showed that material failure was mainly characterized by the sharp increase in both coefficient of friction and surface temperature, and different PV values were measured under different Contact geometry. The discrepancy in measurement of PV values was analyzed in the light of theoretical frictional heating analysis. Results show that surface temperature rise depends on its contact geometry, and PV values could be overestimated in the testing conditions of high sliding velocity. Test data of different contact geometry were normalized by using a normalized contact pressure and sliding velocity; it showed a good correlation. This work suggests that normalized PV values could be more effective in evaluating bearing materials than conventional PV values for a design parameter of journal bearings.

EFFECT OF LOAD ANGLE ON THE OPERATION OF TILTING 12-PADS proceeding BEARING

  • Strzelecki, S.;Someya, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.113-114
    • /
    • 2002
  • Radial, tilting 12-pad proceeding bearings are applied as the radial bearings of vertical rotors of water turbines. The mean loads are stable at the peripheral speeds of proceeding reaching 50 m/s. The operation of tilting 12-pads proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions have been obtained by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss, oil flow, maximum oil film pressure, maximum temperature have been computed for different load angle of bearing.

  • PDF

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part II - Shaft Misalignment Effect (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 II-축 경사도 영향)

  • Chun, Sang-Myung;Jang, Si-Youl
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.305-310
    • /
    • 2001
  • Within some degree of journal misalignment, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined under the condition of variable density and specific heat. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the effects of variable density and specific heat on shaft misalignment are significant in determining the load capacity of a journal bearing operating at high speed.

  • PDF

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part I - Shaft Speed Effect (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 I-축 속고영향)

  • Chun, Sang-Myung;Jang, Si-Youl
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.287-292
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of journal bearing at high speed operation.

  • PDF

An Experimental Study on Ram Pressure and THD Performance of Pivoted Pad Thrust Bearing (피봇식 주력베어링의 선단압력과 THD성능에 관한 실험적 연구)

  • 박홍규;김경웅
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • Effects of the ram-pressure on the THD-performance of pivoted pad thrust bearings are investigated experimentally. A sector-shaped tilting pad thrust bearing and a rotating disk are used. Temperature distribution on the disk surface as well as on the pad surface, distribution of the pressure generated within the fluid film, and the film thickness are measured continuously in the circumferential direction after thermal equilibrium is established. The ram-pressure is proportional to the mean pressure of oil film and to the rotational speed of the disk and affects the maximum pressure and the pressure distribution. The temperature rise on the mating surface of the disc and the pad, contacting with the oil film, is proportional to to the bearing load and the disk speed. The ram-pressure and the temperature rise on the disk surface are dominant factors that affect the THD-performance of pivoted pad thrust bearings.

An Experimental Study on the Characteristics of the High Temperature Superconductor as an Application of the Repulsive Type Magnetic Bearing (반발식 자기 베어링의 응용으로서 고온 초전도체의 특성에 관한 실험적 연구)

  • 유제환;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.52-59
    • /
    • 1997
  • An experimental study is presented for the characteristics of the high temperature superconductor as an application of the repulsive type magnetic bearing. A ring shaped YBCO type superconductor and Neodium permanent magnets are employed for the experiment. For the case of field cooling, superconductor shows strong repulsive force, which is due to the Meissner effect, as the gap between the superconductor and the magnet gets closer. The repulsive force variation with respect to the gap change shows hysterisis characteristics. The area of the loop of the hysterisis curve represents the dissipation of energy, which reveals that the magnetic bearing with superconductor has large damping. The effect of the initial gap and the magnetic flux density on the repulsive force is analyzed experimentally and the static stiffness variation is calculated from the measured repulsive force variation. The relative sliding velocity between the superconductor and the magnet has little effect on the repulsive force which is quite different from the usual sliding element bearing. As the initial gap for the field cooling becomes larger, the maximum repulsive force at the minimum gap increases and approaches to the value for the case of zero field cooling.