• Title/Summary/Keyword: maximum absorption

Search Result 1,128, Processing Time 0.028 seconds

Review of Ca Metabolic Studies and a Model for Optimizing Gastrointestinal Ca Absorption and Peak Bone Mass in Adolescents

  • Park, Jong-Tae;Cho, Byoung-Kwan;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.78-88
    • /
    • 2015
  • Purpose: The objective of this study is to review researches regarding factors that potentially affect adolescent calcium (Ca) metabolism, and to suggest a potential modeling approach for optimizing gastrointestinal Ca absorption and peak bone mass. Background: Optimal gastrointestinal Ca absorption is a key to maximizing peak bone mass in adolescents. Urine Ca excretion in adolescents rises only after bone accretion is saturated, indicating that higher intestinal Ca absorption and bone retention is necessary to ensure maximum bone accretion. Hence, maximizing peak bone mass is possible by controlling the factors influencing gastrointestinal Ca absorption and bone accretion. However, a mechanism that explains the unique adolescent Ca metabolism has not yet been elucidated. Review: Dietary factors that enhance gastrointestinal Ca absorption may increase the available Ca pool usable for bone accretion, and a specific hormone may direct optimal Ca utilization to maximize peak bone mass. IGF-1 is an endocrine hormone whose levels peak during adolescence and increase fractional Ca absorption and bone Ca accretion. Prebiotics, generally obtained from dietary sources, have been reported to exert a beneficial effect on Ca absorption via microbiota activity. We selected and reviewed three candidates that could be used to propose a comprehensive Ca metabolic model for optimal Ca absorption and peak bone mass in adolescents. Modeling: Modeling has been used to investigate Ca metabolism and its regulators. Herein, we reviewed previous Ca modeling studies. Based on this review, we proposed a method for developing a comprehensive model that includes regulatory effectors of IGF-1 and prebiotics.

Synthesis and Properties of Poly[oxy(arylene)oxy(tetramethyldisilylene)]s via Melt Copolymerization Reaction

  • Jung, Eun Ae;Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1637-1642
    • /
    • 2013
  • We carried out the melt copolymerization reactions of 1,2-bis(diethylamino)tetramethyldisilane with several aryldiols such as, 4,4'-biphenol, 4,4'-isopropylidenediphenol, 9H-fluoren-9,9-dimethanol, and 4,4'-(9-fluorenylidene) bis(2-phenoxyethanol) to afford poly[oxy(arylene)oxy(tetramethyldisilylene)]s containing fluorescent aromatic chromophore groups in the polymer main chain: poly[oxy(4,4'-biphenylene)oxy(tetramethyldisilylene)], poly[oxy{(4,4'-isopropylidene) diphenylene}oxy(tetramethyldisilylene)], poly[oxy(9H-fluorene-9,9-dimethylene) oxy(tetramethyldisilylene)], and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxy(tetramethyldisilnylene)]. These prepared materials are soluble in common organic solvents such as $CHCl_3$ and THF. The obtained polymers were characterized by several spectroscopic methods such as $^1H$, $^{13}C$, and $^{29}Si$ NMR. Further, FTIR spectra of all the polymers exhibited characteristic Si-O stretching frequencies at 1014-1087 $cm^{-1}$. These polymeric materials in THF showed strong maximum absorption peaks at 268-281 nm, strong maximum excitation peaks at 263-291 nm, and strong maximum fluorescence emission bands at 314-362 nm due to the presence of tetramethyldisilylene and several arylene chromophores in the polymer main chain. TGA thermograms indicated that most of the polymers were stable up to $200^{\circ}C$ with a weight loss of 3-16% in nitrogen.

Synthesis and Characterization of a New PPV Derivative Containing a Sterically Hindered 2,5-Dimethylphenyl Group

  • Kim, Yun-Hi;Lee, Hyun-Ouk;Lee, Ki-Suk;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.471-475
    • /
    • 2003
  • A new poly[2-(2',5'-dimethylphenyl)-1,4-phenylenevinylene] (PDMPPV) that features a bulky 2',5'-dimethylphenyl substituent, which can induce steric hindrance between the PPV backbone and the methyl groups, was designed and synthesized. The polymer structure having no TBB defects was confirmed by $^1$H-NMR and $\^$13/CNMR spectroscopy. The polymer showed good thermal stability with high T$\_$g/. The polymer film showed a maximum absorption at 415 nm with an absorption onset at 480 nm. The maximum emission peak showed at ca. 515 nm, with a shoulder at 530 nm. The turn-on voltages of ITO/PEDOT/PDMPPV/Al and ITO/PDMPPV/Al devices were 8 and 10 V, respectively. The electroluminescence spectrum from the device showed a maximum peak at 510 nm with a shoulder at ca. 535 nm.

Melt Copolymerization Reactions between 1,3-Bis(diethylamino)tetramethyldisiloxane and Aryldiol Derivatives

  • Jung, In-Kyung;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1303-1309
    • /
    • 2011
  • Melt copolymerization reactions of bis(diethylamino)tetramethyldisiloxane with several aryldiols were carried out to afford poly(carbotetramethyldisiloxane)s containing fluorescent aromatic chromophore groups in the polymer main chain: poly{oxy(4,4'-biphenylene)oxytetramethyldisiloxane}, poly{oxy(1,4-phenylene)oxytetramethyldisiloxane}, poly[oxy{(4,4'-isopropylidene)diphenylene}oxytetramethyldisiloxane], poly[oxy{(4,4'-hexafluoroisopropylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(2,6-naphthalene)oxytetramethyldisiloxane}, poly[oxy{4,4'-(9-fluorenylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(fluorene-9,9-dimethylene)oxytetramethyldisiloxane}, and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxytetramethyldisiloxane]. These materials are soluble in common organic solvents such as $CHCl_3$ and THF. The FTIR spectra of all the polymers exhibit the characteristic Si-O-C stretching frequencies at 1021-1082 $cm^{-1}$. In the THF solution, the polymeric materials show strong maximum absorption peaks at 215-311 nm, with strong maximum excitation peaks at 250-310 nm, and strong maximum fluorescence emission bands at 310-360 nm. TGA thermograms indicate that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of less than 10% in nitrogen.

The Influence of Shield Gas Ratio on the Toughness of A15083-0 GMAW Weld Zone (A15083-O GMAW 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;김건호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.113-199
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and -196$^{\circ}C$ ) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -85$^{\circ}C$, and the maximum load and maximum displacement were shown the highest and the lowest at -196$^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the others specimens was shown that the lower temperature, the higher absorption energy slightly up to -85$^{\circ}C$ but the energy was decreased so mush at -196$^{\circ}C$

  • PDF

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Synthesis and Photoelectronic Properties of Thermally Stable Poly[oxy(2,7-fluoren-9-onenylene)oxy(diorganosilylene)]s

  • Jung, Eun-Ae;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.2031-2036
    • /
    • 2012
  • Melt copolymerization reactions of several bis(diethylamino)silane derivatives, bis(diethylamino)methylphenylsilane, bis(diethylamino)methyloctylsilane, 1,2-bis(diethylamino)tetramethyldisilane, and 1,3-bis(diethylamino) tetramethyldisiloxane, with 2,7-dihydroxyfluoren-9-one were carried out to yield poly[oxy(2,7-fluoren- 9-onenylene)oxy(diorganosilylene)]s bearing the fluoren-9-one fluorescent aromatic group in the polymer main chain: poly[oxy(2,7-fluoren-9-onenylene)oxy(methylphenylsilylene)], poly[oxy(2,7-fluoren-9-onenylene) oxy(methyloctylsilylene)], poly[oxy(2,7-fluoren-9-onenylene)oxy(tetramethyldisilylene)], and poly[oxy- (2,7-fluoren-9-onenylene)oxy(tetramethyldisiloxanylene)]. These polymeric materials are soluble in common organic solvents such as $CHCl_3$ and THF. FTIR spectra of all the materials reveal characteristic Si-O-C stretching frequencies at 1012-1018 $cm^{-1}$. In the THF solution, the prepared materials show strong maximum absorption peaks at 258-270 nm, strong maximum excitation peaks at 260-280 nm, and strong maximum fluorescence emission bands at 310-420 nm. TGA thermograms suggest that most of the polymers are essentially stable to $200^{\circ}C$ without any weight loss and up to $300^{\circ}C$ with only a weight loss of less than 5% in nitrogen.

Ultrasonic Velocity and Absorption Measurements in an Aqueous Solution of Poly(sodium 4-styrenesulfonate)

  • Rae Jong-Rim
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.559-563
    • /
    • 2004
  • Both the ultrasonic velocity at 3 MHz and the absorption coefficient in the frequency range from 0.2 to 2 MHz were measured for aqueous solutions of poly(sodium 4-styrenesulfonate) over the concentration range from 5 to $25\%$ (by weight). The pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range from 10 to $90^{\circ}C;$ the high-Q ultrasonic resonator method was used for the measurement of the absorption coefficient at $20^{\circ}C.$ The velocities exhibited their maximum values at ca. 55, 59, 63, 67, and $71^{\circ}C.$ for the 25, 20, 15, 10, and $5\%$ solutions, respectively. The velocity increased with respect to the poly(sodium 4-styrene-sulfonate) concentration at a given temperature. A study of the concentration dependence of the both the relaxation frequency and amplitude indicated that the relaxation at ca. 200 kHz is related to structural fluctuations of the polymer molecules, such as the segmental motions of the polymer chains and that the relaxation at ca. 1 MHz resulted from the proton transfer reactions of the oxygen sites of $SO_3.$ Both the absorption and the shear viscosity increase upon increasing the polymer concentration, but they decrease upon increasing the temperature.

Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller (중온수 흡수식 냉동기의 열전달 면적 최적화)

  • 정시영;조광운;이상수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.