• Title/Summary/Keyword: maximum a posteriori estimation

Search Result 50, Processing Time 0.021 seconds

Speech Enhancement Based on Minima Controlled Recursive Averaging Technique Incorporating Conditional MAP (조건 사후 최대 확률 기반 최소값 제어 재귀평균기법을 이용한 음성향상)

  • Kum, Jong-Mo;Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.256-261
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) which is based on the conditional maximum a posteriori criterion. A crucial component of a practical speech enhancement system is the estimation of the noise power spectrum. One state-of-the-art approach is the minima controlled recursive averaging (MCRA) technique. The noise estimate in the MCRA technique is obtained by averaging past spectral power values based on a smoothing parameter that is adjusted by the signal presence probability in frequency subbands. We improve the MCRA using the speech presence probability which is the a posteriori probability conditioned on both the current observation the speech presence or absence of the previous frame. With the performance criteria of the ITU-T P.862 perceptual evaluation of speech quality (PESQ) and subjective evaluation of speech quality, we show that the proposed algorithm yields better results compared to the conventional MCRA-based scheme.

Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation (Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.817-827
    • /
    • 2014
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. This study proposes a maximum a posteriori (MAP) estimation using Point-Jacobian iteration to restore a degraded image. The proposed method assumes a Gaussian additive noise and Markov random field of spatial continuity. The proposed method employs a neighbor window of spoke type which is composed of 8 line windows at the 8 directions, and a boundary adjacency measure of Mahalanobis square distance between center and neighbor pixels. For the evaluation of the proposed method, a pixel-wise classification was used for simulation data using various patterns similar to the structure exhibited in high resolution imagery and an unsupervised segmentation for the remotely-sensed image data of 1 mspatial resolution observed over the north area of Anyang in Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution imagery.

Feature Compensation Method Based on Parallel Combined Mixture Model (병렬 결합된 혼합 모델 기반의 특징 보상 기술)

  • 김우일;이흥규;권오일;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.603-611
    • /
    • 2003
  • This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP (Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. For more efficient implementation, we propose a selective model combination which leads to reduction or the computational complexities. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.

Adaptive MAP High-Resolution Image Reconstruction Algorithm Using Local Statistics (국부 통계 특성을 이용한 적응 MAP 방식의 고해상도 영상 복원 방식)

  • Kim, Kyung-Ho;Song, Won-Seon;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1194-1200
    • /
    • 2006
  • In this paper, we propose an adaptive MAP (Maximum A Posteriori) high-resolution image reconstruction algorithm using local statistics. In order to preserve the edge information of an original high-resolution image, a visibility function defined by local statistics of the low-resolution image is incorporated into MAP estimation process, so that the local smoothness is adaptively controlled. The weighted non-quadratic convex functional is defined to obtain the optimal solution that is as close as possible to the original high-resolution image. An iterative algorithm is utilized for obtaining the solution, and the smoothing parameter is updated at each iteration step from the partially reconstructed high-resolution image is required. Experimental results demonstrate the capability of the proposed algorithm.

Robust Correlation Estimation for Rapid Speaker Adaptation (EMAP에 기반한 화자적응을 위한 강인한 상관계수의 예측)

  • 전유진;김동국;김남수
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.113-116
    • /
    • 2000
  • 본 논문에서는 probabilistic principal component analysis (PPCA)를 이용하여 extended maximum a posteriori (EMAP)에 기반한 화자적응 시스템의 성능을 향상시키는 방법을 제시하고자 한다. PPCA는 각각의 hidden Markov model (HMM) 사이의 상관계수 행렬을 강인하게 예측하는데 적용된다. 이렇게 구한 상관계수 행렬은 화자적응 시스템에 사용된다. PPCA는 연산이 효율적이고, EMAP에서 기존에 사용되었던 방법에 비해 향상된 성능을 보여준다. 여러 차례의 음성인식 실험을 통하여, PPCA를 적용한 EMAP은 적은 양의 적응 데이타에서 좋은 성능을 보인다는 것을 확인할 수 있다.

  • PDF

The Comparison of Characteristics in various Speaker Adaptation Methods (여러 화자 적응 방법들의 특성 비교)

  • 황영수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.339-342
    • /
    • 1998
  • In this paper, we proposed various speaker adaptation methods and studied the performance of these methods. Methods which were studied in this paper are MAPE(Maximum A Posteriori Probability Estimation), ARTMAP. In order to evaluate the performance of these methods, we used Korean isolated digits as the experimental data, the hybrid speaker adaptation method, which unfied MAPE, linear spectral estimating and outpur probability of SCHMM, showed the better recognition result than those which performed other methods. And the method using ARTMAP showed the similar result to above hybrid method.

  • PDF

Image analysis using a markov random field and TMS320C80(MVP) (TMS320C80(MVP)과 markov random field를 이용한 영상해석)

  • 백경석;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1722-1725
    • /
    • 1997
  • This paper presents image analysis method using a Markov random field(MRF) model. Particulary, image esgmentation is to partition the given image into regions. This scheme is first segmented into regions, and the obtained domain knowledge is used to obtain the improved segmented image by a Markov random field model. The method is a maximum a posteriori(MAP) estimation with the MRF model and its associated Gibbs distribution. MAP estimation method is applied to capture the natural image by TMS320C80(MVP) and to realize the segmented image by a MRF model.

  • PDF

An Image Synthesis Technique Based on the Pyramidal Structure and MAP Estimation Technique (계층적 Pyramid구조와 MAP 추정 기법을 이용한 Texture 영상 합성 기법)

  • 정석윤;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1238-1246
    • /
    • 1989
  • In this paper, a texture synthesis technique based on the NCAR(non-causal auto-regressive) model and the pyramid structure is proposed. In order to estimate the NCAR model parameters accurately from a noisy texture, the MAP(maximum a posteriori) estimation technique is also employed. In our approach, since the input texture is decomposed into the Laplacian oyramid planes first and then the NCAR model is applied to each plane, we are able to obtain a good synthesized texture even if the texture exhibits some non-random local structure or non-homogenity. The usrfulness of the proposed method is demonstrated with seveal real textures in the Brodatz album. Finally, the 2-dimensional MAP estimation technique can be used to the image restoration for noisy images as well as a texture image synthesis.

  • PDF

QRS detection based on maximum a-posteriori estimation (MAP Estimation을 이용한 QRS Detection)

  • 정희교;신건수;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.709-712
    • /
    • 1987
  • In this paper, a mathematical model for the purpose of QRS detection is considered in the case of the occurrence of nonoverlapping pulse-shaped waveforms corrupted with white noise. The number of waveforms, the arrival times, amplitudes, and widths of QRS complexes are regarded as random variables. The joint MAP estimation of all the unknown quantities consists of linear filtering followed by an optimization procedure. Because of time-consuming, the optimization procedure is modified so that a threshold test is obtained. The model formulation with nonoverlapping waveforms leads to a standard procedure covering a segment before as well as after an accepted event. Adaptivity of the detector is gained by utilizing past signal properties in determining threshold for QRS detection.

  • PDF

Development and Evaluation of an Address Input System Employing Speech Recognition (음성인식 기능을 가진 주소입력 시스템의 개발과 평가)

  • 김득수;황철준;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.3-10
    • /
    • 1999
  • This paper describes the development and evaluation of a Korean address input system employing automatic speech recognition technique as user interface for input Korean address. Address consists of cities, provinces and counties. The system works on a window 95 environment of personal computer with built-in soundcard. In the speech recognition part, the Continuous density Hidden Markov Model(CHMM) for making phoneme like units(PLUs) and One Pass Dynamic Programming(OPDP) algorithm is used for recognition. For address recognition, Finite State Automata(FSA) suitable for Korean address structure is constructed. To achieve an acceptable performance against the variation of speakers, microphones, and environmental noises, Maximum a posteriori(MAP) estimation is implemented in adaptation. And to improve the recognition speed, fast search method using variable pruning threshold is newly proposed. In the evaluation tests conducted for the 100 connected words uttered by 3 males the system showed above average 96.0% of recognition accuracy for connected words after adaption and recognition speed within 2 seconds, showing the effectiveness of the system.

  • PDF