• Title/Summary/Keyword: max-min approach

Search Result 80, Processing Time 0.029 seconds

Performance Analysis and evaluation of the IEEE 802.11e EDCF (IEEE 802.11e EDCF 성능 분석과 평가)

  • Kim Jong Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1356-1366
    • /
    • 2004
  • Recently, the IEEE 802.11 working group has announced a new distributed MAC called EDCF to provide service differentiation among traffic classes. With the increasing demand for supporting Quality of Service in IEEE 802.11 wireless LANs, the EDCF is now attracting many researchers' attention due to its practical worth as a standard mechanism. In this paper, we focus on the analytical approach to evaluate the performance of the EDCF. An analytical model is developed to estimate the throughput of the EDCF in saturation (asymptotic) conditions. Extensive simulation studies have been carried out for the validation of the analysis, and they show that it estimates the throughput of the EDCF accurately By utilizing the analytical model, we evaluate the performance of the EDCF. Specifically, we concentrate on discovering the characteristics of the EDCF Parameters, such as CW/Sub min/, CW/Sub max/ and AIFS, in the way that they influence on the performance of the EDCF.

A Path Establishment Method for Improving Path Stability in Mobile Ad-Hoc Networks (이동 애드혹 네트워크에서 경로의 안정성 향상을 위한 경로 설정 방식)

  • Joe, In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9B
    • /
    • pp.563-568
    • /
    • 2007
  • This paper proposes a routing establishment method for improving path stability in mobile ad-hoc networks. In mobile ad-hoc networks, the network topology is highly dynamic due to the node mobility unlike wired networks. Since the existing methods are based on the shortest path algorithm with the minimum hop count regardless of the path stability, it could lead to packet loss and path disconnection in mobile ad-hoc networks. In particular, if control packets and critical data are transmitted on the unstable path, it causes serious problems. Therefore, this paper proposes one approach in order to minimize packet loss and path disconnection by considering the node mobility. After the destination node receives multiple RREQ messages, it selects the stable path through the proposed MinMax algorithm according to the node speed.

The Effects of Therapeutic Approach of Patellofemoral Pain Syndrome with Asymmetrical Hip Rotation : Case Study (비대칭성 고관절 회전각을 지닌 슬개대퇴통증증후군 환자의 치료적 접근 - 사례연구)

  • Jang, Hyun-Jeong;Kim, Suhn-Yeop;Kim, Ho-Bong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.17 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • Background: Patellofemoral pain syndrome is very common knee problem and altered hip rotation may play a role in patellofemoral pain. The purpose of this case study is to describe the manual therapy of and the therapeutic exercise for a patient with asymmetrical hip rotation and patellofemoral pain. Method: The patient was a 29 years old woman with an 3 month history of anterior right knee pain, without known trauma or injury. Prior to intervention, her score on the VAS was Max 6 to Min 4. Left hip internal rotation was less than right hip internal rotation, and manual muscle testing showed weakness of the left hip internal rotator and abductor muscles. The intervention consisted of manual therapy and therapeutic exercise for three times a weeks, two weeks for increasing right hip medial rotation, improving left hip muscle strength, and eliminating anterior right knee pain. Result: After intervention for 2weeks, passive left and right hip medial rotations were symmetrical, and her right hip internal rotator and abductor muscle grades were Good plus. Her VAS score was Max 2 to Min 0. Conclusion: Manual therapy and therapeutic exercise is effective in improving for patient had patellofemoral pain with pattern of asymmetrical hip rotation.

  • PDF

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.

Routing with Maximum Edge Disjoint Paths and Wavelength Assignment with Path Conflict Graph (최대 EDP를 이용한 경로설정 및 경로 충돌 그래프를 이용한 파장할당 문제 해결 방안)

  • Kim Duk Hun;Chung Min Young;Lee Tae-Jin;Choo Hyunseung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.417-426
    • /
    • 2005
  • Routing and wavelength assignment problem is one of the most important issues in optical transport networks based on wavelength division multiplexing(WDM) technique. In this paper, we propose a novel approach using path conflict graphs and an algorithm for finding all edge disjoint paths. And then we compare the performance of the proposed algorithm with that of bounded greedy approach for EDP(BGAforEDP). The proposed one outperforms up to about 20$\%$ in the fixed traditional topology(NSFNET) and about 32$\%$ in random topologies over the BGA for EDP algorithm.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

Enhanced Graph-Based Method in Spectral Partitioning Segmentation using Homogenous Optimum Cut Algorithm with Boundary Segmentation

  • S. Syed Ibrahim;G. Ravi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.61-70
    • /
    • 2023
  • Image segmentation is a very crucial step in effective digital image processing. In the past decade, several research contributions were given related to this field. However, a general segmentation algorithm suitable for various applications is still challenging. Among several image segmentation approaches, graph-based approach has gained popularity due to its basic ability which reflects global image properties. This paper proposes a methodology to partition the image with its pixel, region and texture along with its intensity. To make segmentation faster in large images, it is processed in parallel among several CPUs. A way to achieve this is to split images into tiles that are independently processed. However, regions overlapping the tile border are split or lost when the minimum size requirements of the segmentation algorithm are not met. Here the contributions are made to segment the image on the basis of its pixel using min-cut/max-flow algorithm along with edge-based segmentation of the image. To segment on the basis of the region using a homogenous optimum cut algorithm with boundary segmentation. On the basis of texture, the object type using spectral partitioning technique is identified which also minimizes the graph cut value.

A Knowledge-Based Linguistic Approach for Researcher-Selection (학술전문가 선정을 위한 지식 기반 언어적 접근)

  • Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.549-553
    • /
    • 2002
  • This paper develops knowledge-based multiple fuzzy rules for researcher-selection by automatic ranking process. Inference rules for researcher-selection are created, then the multiple fuzzy rule system with max-min inference is applied. The way to handle for selection standards according to a certain criteria in dynamic manner, is also suggested in a simulation model. The model offers automatic, fair, and trust decision for researcher-selection processing.

Robust Predictive Control of Robot Manipulators with Uncertainties (불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계)

  • 김정관;한명철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.

Min-Max Regret Version of an m-Machine Ordered Flow Shop with Uncertain Processing Times

  • Park, Myoung-Ju;Choi, Byung-Cheon
    • Management Science and Financial Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • We consider an m-machine flow shop scheduling problem to minimize the latest completion time, where processing times are uncertain. Processing time uncertainty is described through a finite set of processing time vectors. The objective is to minimize maximum deviation from optimality for all scenarios. Since this problem is known to be NP-hard, we consider it with an ordered property. We discuss optimality properties and develop a pseudo-polynomial time approach for the problem with a fixed number of machines and scenarios. Furthermore, we find two special structures for processing time uncertainty that keep the problem NP-hard, even for two machines and two scenarios. Finally, we investigate a special structure for uncertain processing times that makes the problem polynomially solvable.