• 제목/요약/키워드: matrix stiffness method

검색결과 569건 처리시간 0.03초

사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측 (Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake)

  • 양의규;권선용;최정인;김명모
    • 한국지반공학회논문집
    • /
    • 제26권1호
    • /
    • pp.45-54
    • /
    • 2010
  • 말뚝 구조물의 동적 거동을 분석하고 지진파에 대한 공진 안정성을 확보하기 위해서는 고유 진동수를 합리적으로 산정하는 것이 중요하다. 본 연구에서는 간단한 질량 - 스프링 모델을 이용하여 지진 하중을 받는 말뚝 구조물의 고유 진동수를 간편하면서도 효율적으로 예측할 수 있는 방법을 모색하였다. 고유진동수 산정 결과에 큰 영향을 미치는 지반-말뚝 간 스프링 강성을 지반반력상수와 p-y 곡선 그리고 지반 탄성계수 등을 이용하여 결정하고, 이들을 이용하여 계산한 고유진동수를 1g 진동대 실험에서 계측한 고유진동수와 비교한 결과, 지반반력상수를 이용한 Reese(1974) 방법과 동적 p-y 중추 곡선을 이용한 Yang(2009)의 방법을 이용하여 스프링 강성을 산정하는 것이 가장 우수한 결과를 나타내었는데, 건조토에 위치한 말뚝구조물에서는 5% 이내의 오차를 보였으며, 포화토에 위치한 말뚝 구조물의 경우에는 진동 중에 과잉간극수압의 발생여부에 따라 5%에서 40% 사이의 오차를 나타내었다.

A dual approach to perform geometrically nonlinear analysis of plane truss structures

  • Habibi, AliReza;Bidmeshki, Shaahin
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.13-25
    • /
    • 2018
  • The main objective of this study is to develop a dual approach for geometrically nonlinear finite element analysis of plane truss structures. The geometric nonlinearity is considered using the Total Lagrangian formulation. The nonlinear solution is obtained by introducing and minimizing an objective function subjected to displacement-type constraints. The proposed method can fully trace the whole equilibrium path of geometrically nonlinear plane truss structures not only before the limit point but also after it. No stiffness matrix is used in the main approach and the solution is acquired only based on the direct classical stress-strain formulations. As a result, produced errors caused by linearization and approximation of the main equilibrium equation will be eliminated. The suggested algorithm can predict both pre- and post-buckling behavior of the steel plane truss structures as well as any arbitrary point of equilibrium path. In addition, an equilibrium path with multiple limit points and snap-back phenomenon can be followed in this approach. To demonstrate the accuracy, efficiency and robustness of the proposed procedure, numerical results of the suggested approach are compared with theoretical solution, modified arc-length method, and those of reported in the literature.

파랑중 전진하는 선박의 유탄성 응답 (Hydroelastic Responses for a Ship Advancing in Waves)

  • 이호영;임춘규;정형배
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측 (Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis)

  • 김동규;김재민;박원웅;임용택;이용신
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

편심(偏心) 보강평판(補强平板)의 강도(强度) 해석(解析) (Strength Analysis of Eccentrically Stiffened Plates by Finte Element Method)

  • 김창렬;김재복
    • 대한조선학회지
    • /
    • 제17권4호
    • /
    • pp.1-11
    • /
    • 1980
  • Stiffened plates are commonly used as a component of ship's structures. Most frequently symmetrically stiffened plates are used, but some of stern structures and any specified parts are often constructed with eccentrically stiffened plates. The problems of these eccentrically stiffened plates have been studied rarely, and the results of eccentricity effect of eccentrically stiffened plates are not available. This paper deals with the analysis of eccentrically stiffened plates in the linear elastic range. The derivation of the stiffness matrix was carried out by finite element method for which the isoparametric element was adopted. To show the effect of eccentricity, the deflection at the center under the uniformly distributed and the concentrated load of simply supported and clamped plate models are computed respectively in accordance with the eccentricity of the stiffener. As shown in the results of computations, the eccentricity effect of concentrated load case is greater than that of distributed load case and that of simply supported boundary condition is greater than that of clamped boundary condition. The higher eccentricity of stiffener is, the smaller the effect of stiffener becomes, therefore scantling of eccentrically stiffened plates should be considerably greater than those of symmetrically stiffened plates.

  • PDF

고유치문제 형성에 의한 평면판의 탄소성 좌굴 특성 해석 (Analysis of Eelasto-Plastic Buckling Characteristics of Plates Using Eigenvalue Formulation)

  • 황학주;김문겸;이승원;김소운
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.73-82
    • /
    • 1991
  • 판의 탄소성 좌굴문제는 판 구조의 해석과 설계시의 중요성으로 인하여 상당한 관심이 모아져 온 분야이다. 본 연구에서는 유한요소법에 의한 효율적인 탄소성 좌굴해석 프로그램을 개발하였다. 탄소성 강성행렬을 구성하기 위한 소성이론으로는 실험결과와 잘 일치하는 Stowell의 변형이론을 사용하였으며, 좌굴하중을 해석하기 위해서는 고유치해석에 의한 반복기법을 사용하였다. 고유치해석에서는 불필요한 고유치의 계산을 피할 수 있는 subspace반복기법을 사용하였다. 해석결과를 Stowell이 제시한 이론해와 Pride에 의한 실험결과와 비교하여 프로그램의 타당성을 보이고, 이를 이용하여 단순지지, 또는 고정된 경계조건에 대하여 일축 또는 이축응력이 작용되는 여러 경우에 대하여 좌굴하중을 구하였다. 또한, 탄소성 좌굴에 미치는 형상비의 영향을 검토하였다.

  • PDF

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • 정동호;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF